Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tran Le Hoang Yen
Xem chi tiết
An Nguyễn Bá
27 tháng 10 2017 lúc 8:10

Bài 2:Tìm x biết

\\(\\left(4x+3\\right)^3+\\left(5-7x\\right)^3+\\left(3x-8\\right)^3=0\\)

\\(\\Leftrightarrow\\left[\\left(4x\\right)^3+3.\\left(4x\\right)^2.3+3.4x.3^2+3^3\\right]+\\left[5^3-3.5^2.7x+3.5.\\left(7x\\right)^2-\\left(7x\\right)^3\\right]+\\left[\\left(3x\\right)^3-3.\\left(3x\\right)^2.8+3.3x.8^2-8^3\\right]=0\\)

\\(\\Leftrightarrow64x^3+144x^2+108x+27+125-525x+735x^2-343x^3+27x^3-216x^2+576x-512=0\\)

\\(\\Leftrightarrow-252x^3+663x^2+159x-360=0\\)

\\(\\Leftrightarrow3\\left(-84x^3+221x^2+53x-120\\right)=0\\)

 

tthnew
26 tháng 7 2019 lúc 8:38

Bài 2: Đặt \(4x+3=a;5-7x=b;3x-8=c\Rightarrow a+b+c=0\)

Kết hợp với đề bài ta có \(\left\{{}\begin{matrix}a^3+b^3+c^3=0\\a+b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^3+b^3+c^3-3abc+3abc=0\\a+b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc=0\left(1\right)\\a+b+c=0\left(2\right)\end{matrix}\right.\)

Thay (2) vào (1) suy ra \(3abc=0\Leftrightarrow a=0\text{hoặc }b=0\text{hoặc }c=0\)

+) a = 0 suy ra \(x=-\frac{3}{4}\)

+) b = 0 suy ra \(x=\frac{5}{7}\)

+) c = 0 suy ra \(x=\frac{8}{3}\)

Vậy...

Hiền Bùi Ngọc
Xem chi tiết
Tẫn
3 tháng 11 2018 lúc 11:05

\(A=\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)

\(=3n-2n^2-3+2n-\left(n^2+5n\right)\)

\(=3n-2n^2-3+2n-n^2-5n\)

\(=\left(3n-5n+2n\right)-\left(2n^2-n^2\right)-3\)

\(=-3\)

\(\Rightarrowđpcm\)

Moon
3 tháng 11 2018 lúc 11:24

em ms hok lớp 1

Thái Bùi Ngọc
5 tháng 11 2018 lúc 10:58

\(A=\left(n-1\right)\left(3-2n\right)-n\left(n+5\right) \)

\(=3n-2n^2-3+2n-\left(n^2+5n\right)\)

\(=3n-2n^2-3+2n-n^2-5n\)

\(=-3n^2-3\)

\(=3\left(-n^2-1\right)\)

Mà \(3\left(-n^2-1\right)⋮3\)

Vậy \(A⋮3\forall n\)

VICTORY_Trần Thạch Thảo
Xem chi tiết
Minh Triều
5 tháng 7 2016 lúc 20:44

xem lại câu a nhé bạn

Lan Hương
Xem chi tiết
Trần Minh Hoàng
11 tháng 4 2021 lúc 19:34

Do 2 + 1 chia hết cho 3 nên theo bổ đề LTE ta có \(v_3\left(2^{3^n}+1\right)=v_3\left(2+1\right)+v_3\left(3^n\right)=n+1\).

Do đó \(2^{3^n}+1⋮3^{n+1}\) nhưng không chia hết cho \(3^{n+2}\).

MInemy Nguyễn
Xem chi tiết
Lương Đại
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 10 2021 lúc 15:53

\(c,=\left(31,8-21,8\right)^2=10^2=100\\ 12,\\ a,\left(n+2\right)^2-\left(n-2\right)^2\\ =\left(n+2-n+2\right)\left(n+2+n-2\right)\\ =4\cdot2n=8n⋮8\\ b,\left(n+7\right)^2-\left(n-5\right)^2\\ =\left(n+7-n+5\right)\left(n+7+n-5\right)\\ =12\left(2n+2\right)=24\left(n+1\right)⋮24\)

Nguyễn Nguyên Vũ
22 tháng 10 2021 lúc 13:50

tui chiuj

Khách vãng lai đã xóa
Nam Trần
Xem chi tiết
 Mashiro Shiina
14 tháng 7 2017 lúc 22:16

Phải sửa đề là chia hết cho 8 nha,mk có thử lại rồi: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)

\(=n\left(n+4\right)-1\left(n+4\right)-n\left(n+1\right)+4\left(n+1\right)\)

\(=n^2+4n-n+4-n^2+n+4n+4\)

\(=\left(n^2-n^2\right)+\left(4n+4n\right)+\left(n-n\right)+\left(4+4\right)\)

\(=0+8n+0+8\)

\(=8n+8\)

\(=8\left(n+8\right)⋮8\rightarrowđpcm\)

Sách Giáo Khoa
Xem chi tiết
Đinh Đức Hùng
2 tháng 5 2017 lúc 17:03

Ta có : \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)

\(=n\left(3-2n\right)-\left(3-2n\right)-n^2-5n\)

\(=3n-2n^2-3+2n-n^2-5n\)

\(=-3n^2-3\)

\(=-3\left(n^2+1\right)⋮3\)

Vậy \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)⋮3\)

Nguyễn Trần Duy Thiệu
25 tháng 6 2017 lúc 16:48

Ta có \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)=3n-2n^2-3+2n-n^2-5n=-3n-3\)

mà -3n chia hết cho 3,-3 chia hết cho 3

=> biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3(đpcm)

truong trang
28 tháng 6 2017 lúc 10:25

(n-1)(3-2n)-n(n+5)

=3n-2n2-3+2n-n2-5n

=-3n2-3

vậy (n-1)(3-2n)-n(n+5)\(⋮\)3 vs mọi giá trị của n

Học đi
Xem chi tiết
Khôi Bùi
19 tháng 9 2018 lúc 22:05

\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)

\(=2n^2-n^3-6n+3n^2+2-n+n^3+12n+8\)

\(=\left(2n^2+3n^2\right)+\left(n^3-n^3\right)+\left(12n-6n-n\right)+\left(8+2\right)\)

\(=5n^2+5n+10\)

\(=5\left(n^2+n+2\right)⋮5\forall n\in Z\left(đpcm\right)\)