Bài 1: Chứng minh rằng biểu thức không phụ thuộc vào giá trị của biến
a) \(\left(x-1\right)^3-\left(x-1\right).\left(x^2+x+1\right)-3.\left(1-x\right).x\)
Bài 2: Tìm x: \(\left(x-2\right)^3-\left(x-3\right).\left(x^2+3x+9\right)+6.\left(x+1\right)^2=49\)
Bài 3: Tìm 3 số tự nhiên liên tập biết tích 2 số đầu nhỏ hơn tích hai số sau là 50.
Bài 4: Chứng minh rằng: \(\left(n-1\right).\left(n+1\right)-\left(n-7\right).\left(n-5\right)⋮12\)
GIÚP MIK VS!!!! MIK ĐAG CẦN GẤP.
Chứng minh rằng: \(\left(x^n-1\right).\left(x^{n+1}-1\right)⋮\left(x+1\right).\left(x-1\right)^2\)
a) Chứng minh rằng: n3+2012n chia hết cho 48 với mọi n chẵn.
b) Tìm giá trị lớn nhất của biểu thức \(B=\frac{x+1}{\left|x-2\right|}\left(x\in Z\right)\)
cho P =\(7.2014^n+12.1995^n\) với \(n\subseteq N;Q=\dfrac{\left(x^2+n\right)\left(1+n\right)+n^2x^2+1}{\left(x^2-n\right)\left(1-n\right)+n^2x^2+1}\).Chứng minh:
a. P chia hết cho 9
b. Q không phụ thuộc vào x và Q>0
Chứng minh rằng: \(f\left(x\right)⋮g\left(x\right)\) biết: \(f\left(x\right)=\left(x+1\right)^n-x^{4n}-2x+1\)
\(g\left(x\right)=x.\left(x+1\right).\left(2x+1\right)\) (với n thuộc N)
Bài 5:
a) Chứng minh \(n^3+17n\) chia hết cho 6 với mọi n ∈ Z.
b) Rút gọn biểu thức: \(\frac{\left(x^2+a\right)\left(1+a\right)+a^2b^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)
Chứng minh rằng: \(f\left(x\right)⋮g\left(x\right)\) biết: \(f\left(x\right)=\left(x+1\right)^{2n}-x^{4n}-2x+1\)
\(g\left(x\right)=x.\left(x+1\right).\left(2x+1\right)\) với n thuộc N
Chứng minh rằng: \(f\left(x\right)⋮g\left(x\right)\) biết:
\(f\left(x\right)=\left(x+1\right)^{2n}-x^{4n}-2x+1\)
\(g\left(x\right)=x.\left(x+1\right).\left(2x+1\right)\) với n thuộc N
Chứng minh rằng với mọi số nguyên n thì
\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\) chia hết cho 5