1. Giải phương trình: \(\left(x-3\right)^3+\left(x+2\right)^3=\left(2x-1\right)^3\)
2. CMR: \(2009^{2008}+2011^{2010}\) chia hết cho 2010
3.CMR: \(n^3+2012n\) chia hết cho 48 với mọi n chẵn
Bài 5:
a) Chứng minh \(n^3+17n\) chia hết cho 6 với mọi n ∈ Z.
b) Rút gọn biểu thức: \(\frac{\left(x^2+a\right)\left(1+a\right)+a^2b^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)
Bài 1: Chứng minh rằng biểu thức sau nhận giá trị ko âm với mọi giá trị của biến:
\(-\frac{3}{4}\left(x^3y\right)^2\left(-\frac{5}{6}x^2y^4\right)\)
Bài 2: Cho 2 đa thức \(P\left(x\right)=x^2+2mx+m^2\) và \(Q\left(x\right)=x^2+\left(2m+1\right)x+m^2\). Tìm m biết \(P\left(1\right)=Q\left(-1\right)\)
a) CMR biểu thức ko âm với mọi x,y,z.
M=4x(x+y)(x+y+z)(x+z)+y2z2
b) Tính giá trị của biểu thức
E=\(\frac{\left(a-x\right)^2}{a\left(b-a\right)\left(c-a\right)}\) + \(\frac{\left(b-x\right)^2}{b\left(a-b\right)\left(c-b\right)}\) +\(\frac{\left(c-x\right)^2}{c\left(a-c\right)\left(b-c\right)}\) biết 1-\(\frac{x^2}{abc}\) =0
Tìm giá trị lớn nhất của biểu thức \(B=\frac{x+1}{\left|x-2\right|}\left(x\in Z\right)\)
GIÚP MK VS!!!!
1) Cho a^3+b^3+c^3=3abc và abc khác 0. Tính giá trị của P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
2) Tính giá trị biểu thức A= \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
với a khác b, hoặc b khác c, hoặc c khác a
3) Tính giá trị biểu thức B= \(\frac{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}\)
với x khác y, hoặc y khác z, hoặc z khác x
4) Tính giá trị biểu thức C= \(\frac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{3\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
với x khác y; y khác z; z khác x
Bài 1 : Chứng minh đẳng thức \(\left(x+y+z\right)^2-x^2-y^2-z^2=2\left(xy+yz+zx\right)\)
Bài 2 : Tìm số nguyên tố x thỏa mãn : \(x^2-4x-21=0\)
Bài 3 : Cho biểu thức \(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)(x khác 2, x khác -2)
a) Rút gọn biểu thức A.
b) Chứng tỏ rằng với mọi x thỏa mãn -2<x<2, x khác -1 phân thức luôn có giá trị â
Cho biểu thức
P=\(\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)
a)Tìm điều kiện của biến để giá trị biểu thức xác định
b)Rút gọn P
c)Chứng minh rằng :P xác định thì P luôn có giá trị âm
d)Tìm giá trị lớn nhất của P
Tìm giá trị lớn nhất của biểu thức: \(A=\left|x-3\right|.\left(2-\left|x-3\right|\right)\)