Tính thuận tiện : \(\dfrac{15}{7}:\dfrac{1}{2}+\dfrac{3}{14}:\dfrac{1}{2}\)
tính thuận tiện:
\(\dfrac{4}{5}+\dfrac{2}{3}+\dfrac{1}{5}+\dfrac{1}{3}\) \(\dfrac{17}{12}+\dfrac{29}{7}-\dfrac{8}{7}+\dfrac{7}{12}\) \(\dfrac{9}{15}+\dfrac{16}{7}+\dfrac{2}{5}-\dfrac{1}{7}-\dfrac{2}{14}\)
\(\dfrac{2}{5}+\dfrac{6}{9}+\dfrac{7}{4}+\dfrac{3}{5}+\dfrac{1}{3}+\dfrac{1}{4}\)
mik sẽ chỉ tick 3 bn xong trước phải chi tiết rõ ràng
a: =4/5+1/5+2/3+1/3=1+1=2
b: =17/12+7/12+29/7-8/7=3+2=5
c: =3/5+2/5+16/7-1/7-1/7
=1+2=3
d: =2/5+3/5+2/3+1/3+7/4+1/4
=1+1+2
=4
\(\dfrac{4}{5}+\dfrac{2}{3}+\dfrac{1}{5}+\dfrac{1}{3}\)
\(=\left(\dfrac{4}{5}+\dfrac{1}{5}\right)+\left(\dfrac{2}{3}+\dfrac{1}{3}\right)\)
\(=\dfrac{5}{5}+\dfrac{3}{3}\)
\(=1+1\)
\(=2\)
============
\(\dfrac{17}{12}+\dfrac{29}{7}-\dfrac{8}{7}+\dfrac{7}{12}\)
\(=\left(\dfrac{17}{12}+\dfrac{7}{12}\right)+\left(\dfrac{29}{7}-\dfrac{8}{7}\right)\)
\(=\dfrac{24}{12}+\dfrac{21}{7}\)
\(=2+3\)
\(=5\)
====================
\(\dfrac{9}{15}+\dfrac{16}{7}+\dfrac{2}{5}-\dfrac{1}{7}-\dfrac{2}{14}\)
\(=\dfrac{9}{15}+\dfrac{16}{7}+\dfrac{6}{15}-\dfrac{1}{7}-\dfrac{1}{7}\)
\(=\left(\dfrac{9}{15}+\dfrac{6}{15}\right)+\left(\dfrac{16}{7}-\dfrac{1}{7}-\dfrac{1}{7}\right)\)
\(=\dfrac{15}{15}+\dfrac{14}{7}\)
\(=1+2\)
\(=3\)
===============
\(\dfrac{2}{5}+\dfrac{6}{9}+\dfrac{7}{4}+\dfrac{3}{5}+\dfrac{1}{3}+\dfrac{1}{4}\)
\(=\dfrac{2}{5}+\dfrac{2}{3}+\dfrac{7}{4}+\dfrac{3}{5}+\dfrac{1}{3}+\dfrac{1}{4}\)
\(=\left(\dfrac{2}{5}+\dfrac{3}{5}\right)+\left(\dfrac{2}{3}+\dfrac{1}{3}\right)+\left(\dfrac{7}{4}+\dfrac{1}{4}\right)\)
\(=\dfrac{5}{5}+\dfrac{3}{3}+\dfrac{8}{4}\)
\(=1+1+2\)
\(=4\)
Tính bằng cách thuận tiện nhất
B=\(\dfrac{1+\dfrac{1}{7}+\dfrac{1}{7^2}-\dfrac{1}{7^3}}{4+\dfrac{4}{7}+\dfrac{4}{7^2}-\dfrac{4}{7^3}}x\dfrac{858585}{313131}x\left(-1\dfrac{14}{17}\right)\)
\(B=\dfrac{1+\dfrac{1}{7}+\dfrac{1}{7^2}-\dfrac{1}{7^3}}{4+\dfrac{4}{7}+\dfrac{4}{7^2}-\dfrac{4}{7^3}}\cdot\dfrac{858585}{313131}\cdot\left(-1\dfrac{14}{17}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{85}{31}\cdot\dfrac{-31}{17}\)
\(=\dfrac{-5}{4}\)
Ta có: \(B=\dfrac{1+\dfrac{1}{7}+\dfrac{1}{7^2}-\dfrac{1}{7^3}}{4+\dfrac{4}{7}+\dfrac{4}{7^2}-\dfrac{4}{7^3}}.\dfrac{858585}{313131}.\left(-1\dfrac{14}{17}\right)\)
\(=\dfrac{1+\dfrac{1}{7}+\dfrac{1}{7^2}-\dfrac{1}{7^3}}{4\left(1+\dfrac{1}{7}+\dfrac{1}{7^2}-\dfrac{1}{7^3}\right)}.\dfrac{85.10101}{32.10101}.\dfrac{-31}{17}=\dfrac{1}{4}.\dfrac{85}{31}.\dfrac{-31}{17}=-\dfrac{5}{4}\)
a) \(\dfrac{3}{7}\)+\(\dfrac{4}{9}\)+\(\dfrac{8}{14}\)+\(\dfrac{10}{18}\)
b) \(\dfrac{1}{2}\)x\(\dfrac{2}{3}\):\(\dfrac{5}{6}\)x\(\dfrac{5}{6}\)
bài này là bài tính bằng cách thuận tiện nhất nha !
Tính bằng cách thuận tiện nhất:
a) 60 x (\(\dfrac{7}{12}\) + \(\dfrac{4}{15}\))
b) \(\dfrac{1}{2}\) x \(\dfrac{2}{3}\) x \(\dfrac{3}{4}\) x \(\dfrac{4}{5}\) x \(\dfrac{5}{6}\) x \(\dfrac{6}{7}\) x \(\dfrac{7}{8}\) x \(\dfrac{8}{9}\)
60x [7/12+4/15]
60x153/180
=9180/180
b 1/2x2/3x3/4x4/5x5/6x6/7x7/8x8/9=40320/4032
tính bằng cách thuận tiện nhất a, \(\dfrac{5}{13}\)x\(\dfrac{4}{15}\)x13= b, (\(\dfrac{3}{7}\)+\(\dfrac{5}{2}\))x\(\dfrac{7}{5}\)= c, \(\dfrac{1}{5}\)x\(\dfrac{11}{18}\)+\(\dfrac{11}{18}\)x\(\dfrac{3}{5}\)=
\(a,\dfrac{5}{13}\times\dfrac{4}{15}\times13=\dfrac{5\times4\times13}{13\times5\times3}=\dfrac{4}{3}\\ b,\left(\dfrac{3}{7}+\dfrac{5}{2}\right)\times\dfrac{7}{5}=\dfrac{3}{7}\times\dfrac{7}{5}+\dfrac{5}{2}\times\dfrac{7}{5}=\dfrac{3}{5}+\dfrac{7}{2}=\dfrac{6}{10}+\dfrac{35}{10}=\dfrac{41}{10}\\ c,\dfrac{1}{5}\times\dfrac{11}{18}+\dfrac{11}{18}\times\dfrac{3}{5}=\dfrac{11}{18}\times\left(\dfrac{1}{5}+\dfrac{3}{5}\right)=\dfrac{11}{18}\times\dfrac{4}{5}=\dfrac{22}{45}\)
1.tính bằng cách thuận tiện
\(\dfrac{3}{7}\):\(\dfrac{4}{5}\)-\(\dfrac{3}{7}\):\(\dfrac{9}{2}\)
\(=\dfrac{3}{7}\left(\dfrac{5}{4}-\dfrac{2}{9}\right)=\dfrac{3}{7}\cdot\dfrac{45-8}{36}=\dfrac{3}{36}\cdot\dfrac{37}{7}=\dfrac{37}{84}\)
\(\dfrac{3}{7}:\dfrac{4}{5}-\dfrac{3}{7}:\dfrac{9}{2}\)
\(=\dfrac{3}{7}\times\dfrac{5}{4}-\dfrac{3}{7}\times\dfrac{2}{9}\)
\(=\dfrac{3}{7}\times\left(\dfrac{5}{4}-\dfrac{2}{9}\right)\)
\(=\dfrac{3}{7}\times\left(\dfrac{45}{36}-\dfrac{8}{36}\right)\)
\(=\dfrac{3}{7}\times\dfrac{37}{36}\)
\(=\dfrac{37}{84}\)
#DatNe
Tính bằng cách thuận tiện nhất
\(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{3}{7}+\dfrac{4}{7}+\dfrac{5}{7}+\dfrac{6}{7}\)
\(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{3}{7}+\dfrac{4}{7}+\dfrac{5}{7}+\dfrac{6}{7}\)
\(=\dfrac{1+2+3+4+5+6}{7}=3\)
\(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{3}{7}+\dfrac{4}{7}+\dfrac{5}{7}+\dfrac{6}{7}\)
\(=\left(\dfrac{1}{7}+\dfrac{6}{7}\right)+\left(\dfrac{2}{7}+\dfrac{5}{7}\right)+\left(\dfrac{3}{7}+\dfrac{4}{7}\right)\)
\(=1+1+1\)
\(=3\)
Tính thuận tiện :
\(\dfrac{9}{5}+\dfrac{5}{7}+\dfrac{7}{5}+\dfrac{3}{7}\) = ?
\(\dfrac{1}{2}x\dfrac{45}{33}x\dfrac{1}{9}x\dfrac{11}{6}\) = ?
\(\dfrac{9}{5}+\dfrac{5}{7}+\dfrac{7}{5}+\dfrac{3}{7}=\left(\dfrac{9}{5}+\dfrac{7}{5}\right)+\left(\dfrac{5}{7}+\dfrac{3}{7}\right)=\dfrac{16}{5}+\dfrac{8}{7}=\dfrac{112}{35}+\dfrac{40}{35}=\dfrac{152}{35}\)
\(\dfrac{1}{2}\times\dfrac{45}{33}\times\dfrac{1}{9}\times\dfrac{11}{6}=\dfrac{1}{2}\times\dfrac{15}{11}\times\dfrac{1}{9}\times\dfrac{11}{6}=\left(\dfrac{1}{2}\times\dfrac{1}{9}\right)\times\left(\dfrac{15}{11}\times\dfrac{11}{6}\right)=\dfrac{1}{18}\times\dfrac{15}{6}=\dfrac{5}{36}\)
bài 3: tính bằng cách thuận tiện
a) \(\dfrac{13}{50}\) + 0,09 + \(\dfrac{41}{100}\) + 0,24 b) \(9\dfrac{1}{4}\) + \(6\dfrac{2}{7}\) + \(7\dfrac{3}{5}\) + \(8\dfrac{2}{3}\) + \(\dfrac{2}{5}\) + \(\dfrac{1}{3}\) + \(\dfrac{5}{7}\) + \(\dfrac{3}{4}\)
Bài 4: so sánh các cặp phân số sau:
a) \(\dfrac{2008}{2009}\) và \(\dfrac{10}{9}\) b) \(\dfrac{1}{a-1}\) và \(\dfrac{1}{a+1}\) (a>1)
Bài 5: cho phân số \(\dfrac{15}{39}\). Tìm 1 số tự nhiên, biết rằng khi thêm số đó vào mẫu số của phân số đã cho và giữ nguyên tử số thì được phân số mới bằng \(\dfrac{3}{11}\)
giải giúp mik vs, mik cần gấp!
Bài 3
a,26/100+0,009+41/100+0,24
0,26+0,09+0,41+0,24
(0,26+0,24)+(0,09+0,41)
0,5+0,5
=1
b,9+1/4+6+2/7+7+3/5+8+2/3+2/5+1/3+5/7+3/4
(9+6+7+8)+(2/7+5/7)+(1/4+3/4)+(3/5+2/5)+(2/3+1/3)
30+1+1+1+1
=34
Bài 4,5 khó quá mik ko bít lamf^^))
Bài 5: vì \(\dfrac{3}{11}\) = \(\dfrac{3\times5}{11\times5}\) = \(\dfrac{15}{55}\)
Vậy Khi giữ nguyên tử số thì số cần thêm vào mẫu số là:
55 - 39 = 16
Đáp số: 16
Bài 4: a, \(\dfrac{2008}{2009}\) < 1; \(\dfrac{10}{9}\) > 1
\(\dfrac{2008}{2009}\) < \(\dfrac{10}{9}\)
b, \(\dfrac{1}{a+1}\) và \(\dfrac{1}{a-1}\)
Ta có: a + 1 > a - 1 ⇒ \(\dfrac{1}{a+1}\) < \(\dfrac{1}{a-1}\)