Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Lệ
Xem chi tiết

Mình lấy VD các bạn tự tìm hiểu sâu nhé!

- Lễ hội Đốt cháy tâm trạng tồi tệ (Mexico)

- Lễ hội Truyền thống bùn (Brazil)

- Lễ Kỷ niệm tuyết (Paraguay)

- v.v.v....

Hà Quang Minh
20 tháng 9 2023 lúc 0:42

Ví dụ: Lễ hội Ca-na-van

- Lễ hội được tổ chức từ 28/2 - 4/3 hàng năm trên khắp đất nước Bra-xin, trong đó tại thủ đô Ri-ô Gia-nây-rô là nơi hội tụ tất cả các vũ công Samba tài giỏi nhất đổ về tranh tài.

- Nhắc tới lễ hội Ca-na-van là nhắc đến những bộ trang phục hóa trang lộng lẫy của các vũ công Samba, tại đây bạn có thể tận mắt chiêm ngưỡng nhiều bộ trang phục mà chưa bao giờ được thấy trong đời.

- Lễ hội là sự gắn liền với các buổi lễ diễu hành cạnh tranh giữa các trường học dạy Samba. Mỗi trường lại có vũ công, biên đạo múa và nhạc sĩ của riêng mình, tạo nên các màn trình diễn độc đáo.

Hoàng Gia Bảo
Xem chi tiết
Nguyễn Vũ Thu Hương
1 tháng 6 2018 lúc 5:21

- Hướng bay từ Hà Nội đến Viêng Chăn là hướng tây nam.

- Hướng bay từ Cu-a-la Lăm-pơ đến Băng Cốc là hướng bắc.

- Hướng bay từ Hà Nội đến Gia-các-ta là hướng nam.

- Hướng bay từ Cu-a-la Lăm-pơ đến Ma-ni-la là hướng đông bắc.

- Hướng bay từ Hà Nội đến Ma-ni-la là hướng đông nam.

- Hướng bay từ Ma-ni-la đến Băng Cốc là hướng tây.

My Tra
Xem chi tiết
Nguyễn  Việt Dũng
26 tháng 10 2023 lúc 17:03
châu _ fa
Xem chi tiết
Long Sơn
11 tháng 3 2022 lúc 20:01

D

Dark_Hole
11 tháng 3 2022 lúc 20:01

D

Chuu
11 tháng 3 2022 lúc 20:01

D

Nguyễn Vũ Quỳnh Như
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 3 2022 lúc 13:46

Không mất tính tồng quát, giả sử \(AB\le AC\)

Gọi M và D lần lượt là trung điểm và chân đường phân giác trong góc A trên BC

Theo định lý phân giác: \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\Rightarrow\dfrac{CD}{AC}=\dfrac{BD}{AB}\ge\dfrac{BD}{AC}\Rightarrow CD\ge BD\)

\(\Rightarrow BD\le BC-BD\Rightarrow BD\le\dfrac{1}{2}BC\)

\(\Rightarrow BD\le BM\)

\(\Rightarrow AD\le AM\) hay \(l_a\le m_a\)(đpcm)

Đặt \(A=l_a+l_b+l_c=\dfrac{2bc}{b+c}cos\dfrac{A}{2}+\dfrac{2ca}{c+a}cos\dfrac{B}{2}+\dfrac{2ab}{a+b}cos\dfrac{C}{2}\)

\(\Rightarrow A^2=\left(\dfrac{2bc}{b+c}cos\dfrac{A}{2}+\dfrac{2ca}{c+a}cos\dfrac{B}{2}+\dfrac{2ab}{a+b}cos\dfrac{C}{2}\right)^2\)

\(\Rightarrow A^2\le\left[\dfrac{4b^2c^2}{\left(b+c\right)^2}+\dfrac{4c^2a^2}{\left(c+a\right)^2}+\dfrac{4a^2b^2}{\left(a+b\right)^2}\right]\left(cos^2\dfrac{A}{2}+cos^2\dfrac{B}{2}+cos^2\dfrac{C}{2}\right)\)

Áp dụng BĐT cơ bản \(\left(x+y\right)\ge4xy\) ta có:

\(\dfrac{4b^2c^2}{\left(b+c\right)^2}+\dfrac{4c^2a^2}{\left(c+a\right)^2}+\dfrac{4a^2b^2}{\left(a+b\right)^2}\le\dfrac{4b^2c^2}{4bc}+\dfrac{4c^2a^2}{4ca}+\dfrac{4a^2b^2}{4ab}\)

\(=ab+bc+ca\le\dfrac{1}{3}\left(a+b+c\right)^2\)

Đồng thời:

\(cos^2\dfrac{A}{2}+cos^2\dfrac{B}{2}+cos^2\dfrac{C}{2}=\dfrac{3+cosA+cosB+cosC}{2}\le\dfrac{3+\dfrac{3}{2}}{2}=\dfrac{9}{4}\)

\(\Rightarrow A^2\le\dfrac{9}{4}.\dfrac{1}{3}\left(a+b+c\right)^2\)

\(\Rightarrow A\le\sqrt{3}\left(\dfrac{a+b+c}{2}\right)=p\sqrt{3}\) (đpcm)

Dấu "=" xảy ra khi tam giác ABC đều

Nguyễn Thanh Hà
Xem chi tiết
Trần Lệ Như
Xem chi tiết
Huỳnh Thiên Kim
Xem chi tiết
Đinh Nguyễn Nguyệt Hà
Xem chi tiết
Huỳnh Thị Minh Huyền
22 tháng 9 2015 lúc 16:33

MÌNH ĐẦU TIÊN, **** MÌNH NHA