1) 2x2+8x+7
2)2x2-5x-12
3)4x3-2x-4
4)x4+x+1
5)x7+x+1
m.n giúp mjk vs ạ, thanks( PTĐTTNT)
Giải phương trình
e) x4 -4x3-8x2+8x=0
f) 2x2+3xy+y2=0
g) 2x4-x3-9x2+13x-5=0
h) (x+1)(x+3)(x+5)(x+7)+15=0
e: =>x(x^3-4x^2-8x+8)=0
=>x[(x^3+8)-4x(x+2)]=0
=>x(x+2)(x^2-2x+4-4x)=0
=>x(x+2)(x^2-6x+4)=0
=>\(x\in\left\{0;-2;3+\sqrt{5};3-\sqrt{5}\right\}\)
g: =>2x^4+5x^3-6x^3-15x^2+6x^2+15x-2x-5=0
=>(2x+5)(x^3-3x^2+3x-1)=0
=>(2x+5)(x-1)^3=0
=>x=1 hoặc x=-5/2
h: =>(x^2+8x+7)(x^2+8x+15)+15=0
=>(x^2+8x)^2+22(x^2+8x)+120=0
=>(x^2+8x+10)(x^2+8x+12)=0
=>(x^2+8x+10)(x+2)(x+6)=0
=>\(x\in\left\{-2;-6;-4+\sqrt{6};-4-\sqrt{6}\right\}\)
e) Cho đa thức Q(x)= x4 + 4x3 + 2x2 - 4x +1
Tính Q(-2); Q(1)
Giúp mik với ạ:<<<
`Q(-2)=(-2)^4+4*(-2)^3+2*(-2)^2-4*(-2)+1`
`= 16+4*(-8)+2*4+8+1`
`= 16-32+8+8+1`
`= -16+8+8+1`
`= -8+8+1=1`
`Q(1)=1^4+4*1^3+2*1^2-4*1+1`
`= 1+4+2-4+1`
`= 2+2+4-4=4`
Q(-2) = (-2)⁴ + 4.(-2)³ + 2.(-2)² - 4.(-2) + 1
= 16 - 32 + 8 + 8 + 1
= 1
--------------------
Q(1) = 1⁴ + 4.1³ + 2.1² - 4.1 + 1
= 1 + 4 + 2 - 4 + 1
= 4
Tính f(x) – g(x) với:
f(x) = x7 – 3x2 – x5 + x4 – x2 + 2x – 7
g(x) = x – 2x2 + x4 – x5 – x7 – 4x2 – 1
Thu gọn, sắp xếp đa thức theo lũy thừa giảm của biến:
* Ta có: f(x) = x7 – 3x2 – x5 + x4 – x2 + 2x – 7
= x7 - (3x2+ x2) – x5+ x4 + 2x – 7
= x7 – 4x2 – x5+ x4 + 2x – 7
= x7 – x5 + x4 – 4x2 + 2x - 7
g(x) = x – 2x2 + x4 – x5 – x7 – 4x2 – 1
= x – ( 2x2 + 4x2) + x4 – x5 –x7 – 1
= x – 6x2 + x4 – x5 – x7 – 1
= -x7 – x5 + x4 – 6x2 + x – 1
* f(x) – g(x)
Vậy f(x) – g(x) = 2x7 + 2x2 + x - 6
Cho f(x)= x5 + 3x2 − 5x3 − x7 + x3 + 2x2 + x5 − 4x2 + x7; g(x) = x4 + 4x3 − 5x8 − x7 + x3 + x2 − 2x7 + x4 – 4x2 − x8. Thu gọn và sắp xếp các đa thức f(x) và g(x) theo luỹ thừa giảm của biến rồi tìm bậc của đa thức đó.
f(x) = x5 + 3x2 − 5x3 − x7 + x3 + 2x2 + x5 − 4x2 + x7
= (x5 + x5) + (3x2 + 2x2 – 4x2) + (-5x3 + x3) + (-x7 + x7)
= 2x5 + x2 – 4x3.
= 2x5 - 4x3 + x2
Đa thức có bậc là 5
g(x) = x4 + 4x3 – 5x8 – x7 + x3 + x2 – 2x7 + x4 – 4x2 – x8
= (x4 + x4) + (4x3 + x3) – (5x8 + x8) – (x7 + 2x7) + (x2 – 4x2)
= 2x4 + 5x3 – 6x8 – 3x7 – 3x2
= -6x8 - 3x7 + 2x4 + 5x3 - 3x2.
Đa thức có bậc là 8.
Đa thức có bậc là 5 nhe
Bài 1 (1,5 điểm): Cho đa thức A(x) = - 3x3 + 2x2 - 6 + 5x + 4x3 - 2x2 - 4 - 4x
a, thu gọn đa thức và cho biết bậc của đa thức, hệ số cao nhất
b, Tìm biểu thức B(x) = A(x). (x - 1). Sau đó tính giá trị B(x) tại x = 2 ( giúp em câu b vs ạ)
\(a,A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)
Bậc của đa thức \(3\)
Hệ số cao nhất là \(1\)
\(b,B\left(x\right)=A\left(x\right).\left(x-1\right)=\left(x^3+x-10\right)\left(x-1\right)\\ =x^3.x+x.x-10x-x^3-x+10\\ =x^4+x^2-x^3-x-10x+10\\ =x^4-x^3+x^2-11x+10\)
Thay \(x=2\) vào \(B\left(x\right)\)
\(=2^4-2^3+2^2-11.2+10\\ =0\)
Vậy tại \(x=2\) thì \(B\left(x\right)=0\)
giúp với :(
Q(x)=x4+4x3+2x2-4x+1 Tính:Q=-2;Q=-1
\(Q\left(x\right)=x^4+4x^3+2x^2-4x+1\)
\(\Rightarrow Q\left(-2\right)=\left(-2\right)^4+4\cdot\left(-2\right)^3+2\cdot\left(-2\right)^2-4\cdot\left(-2\right)+1=1\)
\(Q\left(-1\right)=\left(-1\right)^4+4\cdot\left(-1\right)^3+2\cdot\left(-1\right)^2-4\cdot\left(-1\right)+1=4\)
a/ P(x) = x4 + 2x2 + 1;
b/ Q(x) = x4 + 4x3 + 2x2 – 4x + 1;
Tính P(-1); P(1); Q(2); Q(1)
\(P\left(-1\right)=\left(-1\right)^4+2.\left(-1\right)^2+1=4\\ P\left(1\right)=1^4+2.1^2+1=4\)
\(P\left(-1\right)=\left(-1\right)^4+2\cdot\left(-1\right)^2+1=4\)
\(P\left(1\right)=P\left(-1\right)=4\)
\(Q\left(2\right)=2^4+4\cdot2^3+2\cdot2^2-4\cdot2+1=49\)
\(Q\left(1\right)=1^4+4\cdot1^3+2\cdot1^2-4\cdot1+1=4\)
Phân tích các đa thức sau thành nhân tử
a,x4+2x3+3x2+2x+1
b,x4-4x3+2x2+4x+1
c,x4+x3+2x2+2x+4
Cho đa thức A(x) = - 3x3 + 2x2 - 6 + 5x + 4x3 - 2x2 - 4 - 4x
a, thu gọn đa thức
và cho biết bậc của đa thức, hệ số cao nhất ( các bn giúp mik vs)
a,
\(A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\\ =\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)+\left(-6-4\right)\\ =x^3+0+x-10\\ =x^3+x-10\)
Bậc của đa thức là 3
Hệ số cao nhất ứng với x mũ lớn nhất là 1
Thu gọn:
\(A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x\)
\(A\left(x\right)=\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)-\left(6+4\right)\)
\(A\left(x\right)=x^3+x-10\)
Bậc của đa thức là 3
Hệ số cao nhất là 1
Ta có:
\(A\left(x\right)=-3x^3+2x^2-6+5x+4x^3-2x^2-4-4x^{ }\)
\(=\left(-3x^3+4x^3\right)+\left(2x^2-2x^2\right)+\left(5x-4x\right)-\left(6+4\right)\)
\(=x^3+x-10\)
Bậc của đa thức là 3, hệ số cao nhất là 1