\(2\sqrt{37+20\sqrt{3}}\) - \(\sqrt{73-40\sqrt{3}}\)
Lời giải tri tiết
\(2\sqrt{37+20\sqrt{3}}\) - \(\sqrt{73-40\sqrt{3}}\)
\(2\sqrt[]{37+20\sqrt[]{3}}-\sqrt[]{73-40\sqrt[]{3}}\)
\(=2\sqrt[]{25+2.5.2\sqrt[]{3}+12}-\sqrt[]{48-2.5.4\sqrt[]{3}+25}\)
\(=2\sqrt[]{\left(5+2\sqrt[]{3}\right)^2}-\sqrt[]{\left(5-4\sqrt[]{3}\right)^2}\)
\(=2\left|5+2\sqrt[]{3}\right|-\left|5-4\sqrt[]{3}\right|\)
\(=2\left(5+2\sqrt[]{3}\right)-\left(4\sqrt[]{3}-5\right)\left(vì.4\sqrt[]{3}>5\right)\)
\(=10+4\sqrt[]{3}-4\sqrt[]{3}+5\)
\(=15\)
Rút gọn: (Giải chi tiết từng bước)
9) \(2\sqrt{8\sqrt{3}-2\sqrt{5\sqrt{3}}}-3\sqrt{20\sqrt{3}}\)
10) \(\sqrt{12x}-\sqrt{48x}-3\sqrt{3x}+27\) với x \(\ge\) 0
11) \(\sqrt{18x}-5\sqrt{8x}+7\sqrt{18x}+28\) với \(x\ge0\)
12) \(\sqrt{45a}-\sqrt{20a}+4\sqrt{45a}+\sqrt{a}\) với \(a\ge0\)
Cần gấp ạ
9) Sửa: \(2\sqrt{8\sqrt{3}}-2\sqrt{5\text{ }\sqrt{3}}-3\sqrt{20\sqrt{3}}\)
\(=2\sqrt{2^2\cdot2\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{2^2\cdot5\sqrt{3}}\)
\(=2\cdot2\sqrt{2\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\cdot2\sqrt{5\sqrt{3}}\)
\(=4\sqrt{2\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}\)
\(=4\sqrt{2\sqrt{3}}-8\sqrt{5\sqrt{3}}\)
10) \(\sqrt{12x}-\sqrt{48x}-3\sqrt{3x}+27\)
\(=\sqrt{2^2\cdot3x}-\sqrt{4^2\cdot3x}-3\sqrt{3x}+27\)
\(=2\sqrt{3x}-4\sqrt{3x}-3\sqrt{3x}+27\)
\(=-5\sqrt{3x}++27\)
11) \(\sqrt{18x}-5\sqrt{8x}+7\sqrt{18x}+28\)
\(=\sqrt{3^2\cdot2x}-5\sqrt{2^2\cdot2x}+7\sqrt{3^2\cdot2x}+28\)
\(=3\sqrt{2x}-5\cdot2\sqrt{2x}+7\cdot3\sqrt{2x}+28\)
\(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28\)
\(=14\sqrt{2x}+28\)
12) \(\sqrt{45a}-\sqrt{20a}+4\sqrt{45a}+\sqrt{a}\)
\(=\sqrt{3^2\cdot5a}-\sqrt{2^2\cdot5a}+4\sqrt{3^2\cdot5a}+\sqrt{a}\)
\(=3\sqrt{5a}-2\sqrt{5a}+4\cdot3\sqrt{5a}+\sqrt{a}\)
\(=3\sqrt{5a}-2\sqrt{5a}+12\sqrt{5a}+\sqrt{a}\)
\(=13\sqrt{5a}+\sqrt{a}\)
Rút gọn \(M=\sqrt[2]{37+20\sqrt[2]{3}}-\sqrt[2]{37-20\sqrt[2]{3}}\)
Thu gọn:
\(\sqrt{\sqrt{83-20\sqrt{6}}+\sqrt{62-20\sqrt{6}}}.\sqrt{3\sqrt{3}-3\sqrt{2}}\)
Cho đáp số là: 3 (cần cách giải và lời giải )
10 tik nha !!!!
Cần GẤPPPPPP
Phân tích cái trong ngặc đầu thành: (5 căn 3 - 2 căn 2)^2
cái thứ 2 là ( 5 căn 2 - 2 căn 3)^2
sau đó phá đc 1 ngặc làm tiếp
Thực hiện các phép tính (không được ghi mỗi kết quả không, phải giải chi tiết)
A = \(2\sqrt{10}.3\sqrt{8}.2\)
B = \(\sqrt{20}\left(2\sqrt{3}-\sqrt{5}\right)\)
C = \(\left(2\sqrt{5}-3\right)\left(2\sqrt{5}+3\right)\)
a: \(=12\sqrt{80}=48\sqrt{5}\)
b: \(=2\sqrt{5}\cdot2\sqrt{3}-10=4\sqrt{15}-10\)
c: =20-9=11
tính gia tri của :\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
\(\sqrt{37-20\sqrt{3}}+\sqrt{37+20\sqrt{3}}\)
\(\sqrt{37-20\sqrt{3}}+\sqrt{37+20\sqrt{3}}\)
\(=\sqrt{37-2\sqrt{300}}+\sqrt{37+2\sqrt{300}}\)
\(=\sqrt{\left(5-\sqrt{12}\right)^2}+\sqrt{\left(5-\sqrt{12}\right)^2}\)
\(=|5-\sqrt{12}|+|5+\sqrt{12}|\)
\(=5-\sqrt{12}+5+\sqrt{12}\)
\(=10\)
Rút gọn biểu thức : A = \(\dfrac{1}{2-\sqrt{3}}\) + \(\dfrac{1}{2+\sqrt{3}}\) - \(\sqrt{37-20\sqrt{3}}\)
\(A=\dfrac{1}{2-\sqrt{3}}+\dfrac{1}{2+\sqrt{3}}-\sqrt{37-20\sqrt{3}}\)
\(=\dfrac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\dfrac{2-\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}-\sqrt{\left(5-2\sqrt{3}\right)^2}\)
\(=2+\sqrt{3}+2-\sqrt{3}-5+2\sqrt{3}\)
\(=2\sqrt{3}-1\)
\(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)
\(\dfrac{1}{\sqrt{3}-1}-\dfrac{1}{\sqrt{3}+1}\)
\(2\sqrt{5}-3\sqrt{45}+\sqrt{500}\)
\(\dfrac{1}{\sqrt{3}+\sqrt{2}}-\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}\)
\(\dfrac{1}{2+\sqrt{3}}-\dfrac{1}{2-\sqrt{3}}+5\sqrt{3}\)
\(\sqrt{3}-\sqrt{4+2\sqrt{3}}\)
\(\dfrac{5-\sqrt{5}}{\sqrt{5}-1}-\dfrac{4}{\sqrt{5}+1}\)
\(\sqrt{37-20\sqrt{3}+\sqrt{37+20\sqrt{3}}}\)
a) \(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}=\sqrt{2}+1-\left(\sqrt{2}-1\right)=2\)
b) \(\dfrac{1}{\sqrt{3}-1}-\dfrac{1}{\sqrt{3}+1}=\dfrac{\sqrt{3}+1-\left(\sqrt{3}-1\right)}{3-1}=1\)
c) \(2\sqrt{5}-3\sqrt{45}+\sqrt{500}=2\sqrt{5}-9\sqrt{5}+10\sqrt{5}=3\sqrt{5}\)
d) \(\dfrac{1}{\sqrt{3}+\sqrt{2}}-\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}=\dfrac{1}{\sqrt{3}+\sqrt{2}}-\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{4}\right)}{\sqrt{5}-2}=\dfrac{1}{\sqrt{3}+\sqrt{2}}-\sqrt{3}=\dfrac{1-\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}=\dfrac{1-3-\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\dfrac{-2-\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\dfrac{-\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}=-\sqrt{2}\)
e) \(\dfrac{1}{2+\sqrt{3}}-\dfrac{1}{2-\sqrt{3}}+5\sqrt{3}=\dfrac{2-\sqrt{3}-\left(2+\sqrt{3}\right)}{4-3}+5\sqrt{3}=-2\sqrt{3}+5\sqrt{3}=3\sqrt{3}\)
f) \(\sqrt{3}-\sqrt{4+2\sqrt{3}}=\sqrt{3}-\left(\sqrt{3}+1\right)=-1\)
g) \(\dfrac{5-\sqrt{5}}{\sqrt{5}-1}-\dfrac{4}{\sqrt{5}+1}=\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}-\dfrac{4}{\sqrt{5}+1}=\sqrt{5}-\dfrac{4}{\sqrt{5}+1}=\dfrac{5+\sqrt{5}-4}{\sqrt{5}+1}=1\)
h)\(\sqrt{37-20\sqrt{3}+\sqrt{37+20\sqrt{3}}}=\sqrt{37-20\sqrt{3}+\left(5+2\sqrt{3}\right)}=\sqrt{42-18\sqrt{3}}=\sqrt{\left(3\sqrt{3}+3\right)^2+6}\)