Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 4 2018 lúc 14:50

Để PT có hai nghiệm  x 1 ; x 2  thì:  Δ = 25 − 12 m + 4 ≥ 0 ⇔ 29 − 12 m ≥ 0 ⇔ m ≤ 29 12

Ta có:  x 1 3 − x 2 3 + 3 x 1 x 2 = 75 ⇔ ( x 1 − x 2 ) [ ( x 1 + x 2 ) 2 − x 1 x 2 ] + 3 x 1 x 2 − 75 = 0     (*)

Theo định lý Vi-et ta có:  x 1 + x 2 = − 5 x 1 x 2 = 3 m − 1  thay vào (*) ta được

( x 1 − x 2 ) ( 26 − 3 m ) + 3 ( 3 m − 26 ) = 0 ⇔ ( x 1 − x 2 − 3 ) ( 26 − 3 m ) = 0 ⇔ m = 26 3                   x 1 − x 2 − 3 = 0

Kết hợp với điều kiện thì m = 26/3 không thỏa mãn.

Kết hợp  x 1 − x 2 − 3 = 0  với hệ thức Vi - et ta có hệ:  x 1 − x 2 − 3 = 0 x 1 + x 2 = − 5 x 1 x 2 = 3 m − 1 ⇔ x 1 = − 1 x 2 = − 4 m = 5 3        ( t / m ) .

Vậy m = 5/3  là giá trị cần tìm.

 

Nguyên
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 4 2021 lúc 22:00

\(\Delta=25-4\left(3m-1\right)\ge0\Rightarrow m\le\dfrac{29}{12}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=3m-1\end{matrix}\right.\)

\(x_1^3-x_2^3+3x_1x_2=75\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]+3x_1x_2=75\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(26-3m\right)+9m-3=75\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(26-3m\right)=3\left(26-3m\right)\)

\(\Rightarrow x_1-x_2=3\)

Kết hợp hệ thức Viet: \(\left\{{}\begin{matrix}x_1-x_2=3\\x_1+x_2=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=-4\end{matrix}\right.\)

Thế vào \(x_1x_2=3m-1\Rightarrow3m-1=4\Rightarrow m=\dfrac{5}{3}\)

vi thanh tùng
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 4 2023 lúc 15:16

x1+x2=3; x1*x2=-7

B=(x1+x2)^2-2x1x2

=9-2*(-7)=23

D=(x1+x2)^3-3x1x2(x1+x2)

=3^3-3*(-7)*3

=27+63=90

F=9x1x2+3(x1^2+x2^2)+x1x2

=10x1x2+3*23

=10*(-7)+69

=-1

\(C=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{3^2-4\cdot\left(-7\right)}=\sqrt{37}\)

Mai Hương
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 8 2023 lúc 22:12

a: Khi x=3 thì pt sẽ là:

3^2-2*3+m+3=0

=>m-6+9+3=0

=>m+6=0

=>m=-6

x1+x2=2

=>x2=2-3=-1

b:

Δ=(-2)^2-4(m+3)

=4-4m-12

=-4m-8

Để phương trình có hai nghiệm phân biệt thì:

-4m-8>=0

=>m<=-2

x1^3+x2^3=8

=>(x1+x2)^3-3x1x2(x1+x2)=8

=>2^3-3*2(m+3)=8

=>6(m+3)=0

=>m+3=0

=>m=-3(nhận)

Ngoc Tram
Xem chi tiết
YangSu
2 tháng 4 2023 lúc 17:10

\(x\left(3x-4\right)=2x^2+1\)

\(\Leftrightarrow3x^2-4x-2x^2-1=0\)

\(\Leftrightarrow x^2-4x-1=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=4\\x_1x_2=\dfrac{c}{a}=-1\end{matrix}\right.\)

Ta có :

\(A=x_1^2+x_2^2+3x_1x_2\)

\(=\left(x_1+x_2\right)^2-2x_1x_2+3x_1x_2\)

\(=\left(x_1+x_2\right)^2+x_1x_2\)

\(=4^2-1\)

\(=16-1\)

\(=15\)

Nguyen Tam
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 6 2022 lúc 22:46

Bài 2:

a: \(a=1;b=-2\left(m-2\right);c=-8\)

Vì ac<0 nên phương trình luôn có hai nghiệm trái dấu với mọi m

b: Theo Vi-et, ta được: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)=2m-4\\x_1x_2=-8\end{matrix}\right.\)

Ta có: \(x_1^3+x_2^3-4x_1-4x_2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-4\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(2m-4\right)^3-3\cdot\left(2m-4\right)\cdot\left(-8\right)-4\cdot\left(2m-4\right)=0\)

\(\Leftrightarrow\left(2m-4\right)\left[4m^2-16m+16+24-4\right]=0\)

\(\Leftrightarrow\left(2m-4\right)\left(4m^2-16m+36\right)=0\)

\(\Leftrightarrow2m-4=0\)

hay m=2

kênh youtube: chaau high...
Xem chi tiết

Ta có: \(\Delta=\left\lbrack2\left(m-3\right)\right\rbrack^2-4\left(3m^2-8m+5\right)\)

\(=4\left(m^2-6m+9\right)-12m^2+32m-20\)

\(=4m^2-24m+36-12m^2+32m-20=-8m^2+8m+16\)

\(=-8\left(m^2-m-2\right)=-8\left(m-2\right)\left(m+1\right)\)

Để phương trình có hai nghiệm thì Δ>=0

=>-8(m-2)(m+1)>=0

=>(m-2)(m+1)<=0

=>-1<=m<=2

Theo Vi-et, ta có: \(\begin{cases}x_1+x_2=-\frac{b}{a}=2\left(m-3\right)\\ x_1x_2=\frac{c}{a}=3m^2-8m+5=\left(3m-5\right)\left(m-1\right)\end{cases}\)

\(x_1^2+2x_2^2-3x_1x_2=x_1-x_2\)

=>\(\left(x_1-x_2\right)\left(x_1-2x_2\right)-\left(x_1-x_2\right)=0\)

=>\(\left(x_1-x_2\right)\left(x_1-2x_2-1\right)=0\)

TH1: \(x_1-x_2=0\)

=>\(x_1=x_2\)

\(x_1+x_2=2\left(m-3\right)\)

nên \(x_1=x_2=\frac{2\left(m-3\right)}{2}=m-3\)

\(x_1x_2=3m^2-8m+5\)

=>\(3m^2-8m+5=\left(m-3\right)^2=m^2-6m+9\)

=>\(2m^2-2m-4=0\)

=>\(m^2-m-2=0\)

=>(m-2)(m+1)=0

=>\(\left[\begin{array}{l}m-2=0\\ m+1=0\end{array}\right.\Rightarrow\left[\begin{array}{l}m=2\left(nhận\right)\\ m=-1\left(nhận\right)\end{array}\right.\)

TH2: \(x_1-2x_2-1=0\)

=>\(x_1-2x_2=1\)

\(x_1+x_2=2\left(m-3\right)=2m-6\)

nên \(x_1-2x_2-x_1-x_2=1-2m+6=-2m+7\)

=>\(-3x_2=-2m+7\)

=>\(x_2=\frac{2m-7}{3}\)

\(x_1+x_2=2m-6\)

=>\(x_1=2m-6-\frac{2m-7}{3}=\frac{3\left(2m-6\right)-2m+7}{3}=\frac{4m-11}{3}\)

\(x_1x_2=3m^2-8m+5\)

=>\(\frac{\left(2m-7\right)\left(4m-11\right)}{9}=3m^2-8m+5\)

=>\(9\left(3m^2-8m+5\right)=\left(2m-7\right)\left(4m-11\right)\)

=>\(27m^2-72m+45=8m^2-50m+77\)

=>\(19m^2-22m-32=0\)

=>(19m+16)(m-2)=0

=>\(\left[\begin{array}{l}19m+16=0\\ m-2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}m=-\frac{16}{19}\left(nhận\right)\\ m=2\left(nhận\right)\end{array}\right.\)

Nguyễn Hoàng Huy
Xem chi tiết
Xyz OLM
2 tháng 5 2023 lúc 17:42

Phương trình đã cho có nghiệm phân biệt khi : 

\(\Delta'=m^2-\left(m^2+2m+3\right)=-2m-3>0\)

\(\Leftrightarrow m< -\dfrac{3}{2}\)(*)

Hệ thức Viette : \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=m^2+2m+3\end{matrix}\right.\)

Có \(x_1^3+x_2^3=108\)

\(\Leftrightarrow\left(x_1+x_2\right).\left(x_1^2-x_1x_2+x_2^2\right)=108\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=108\)

\(\Leftrightarrow-8m^3+6m\left(m^2+2m+3\right)=108\)

\(\Leftrightarrow m^3-6m^2-9m+54=0\)

\(\Leftrightarrow\left(m-6\right).\left(m-3\right).\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=6\\m=\pm3\end{matrix}\right.\)

Kết hợp (*) được m = -3 thỏa mãn

mập bé
Xem chi tiết