Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Tìm m để phương trình:  x 2 + 5 x + 3 m − 1 = 0 (x là ẩn, m là tham số) có hai nghiệm  x 1 ; x 2  thỏa mãn  x 1 3 − x 2 3 + 3 x 1 x 2 = 75 .

Cao Minh Tâm
28 tháng 4 2018 lúc 14:50

Để PT có hai nghiệm  x 1 ; x 2  thì:  Δ = 25 − 12 m + 4 ≥ 0 ⇔ 29 − 12 m ≥ 0 ⇔ m ≤ 29 12

Ta có:  x 1 3 − x 2 3 + 3 x 1 x 2 = 75 ⇔ ( x 1 − x 2 ) [ ( x 1 + x 2 ) 2 − x 1 x 2 ] + 3 x 1 x 2 − 75 = 0     (*)

Theo định lý Vi-et ta có:  x 1 + x 2 = − 5 x 1 x 2 = 3 m − 1  thay vào (*) ta được

( x 1 − x 2 ) ( 26 − 3 m ) + 3 ( 3 m − 26 ) = 0 ⇔ ( x 1 − x 2 − 3 ) ( 26 − 3 m ) = 0 ⇔ m = 26 3                   x 1 − x 2 − 3 = 0

Kết hợp với điều kiện thì m = 26/3 không thỏa mãn.

Kết hợp  x 1 − x 2 − 3 = 0  với hệ thức Vi - et ta có hệ:  x 1 − x 2 − 3 = 0 x 1 + x 2 = − 5 x 1 x 2 = 3 m − 1 ⇔ x 1 = − 1 x 2 = − 4 m = 5 3        ( t / m ) .

Vậy m = 5/3  là giá trị cần tìm.