A = (sqrt(4 + 2sqrt(3)) - 1)/(sqrt(4 + 2sqrt(3)) +2)
A = (sqrt(4 + 2sqrt(3)) + 1)/(sqrt(4 + 2sqrt(3)) - 1)
\(A=\dfrac{\sqrt{4+2\sqrt{3}}+1}{\sqrt{4+2\sqrt{3}}-1}\)
\(A=\dfrac{\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}\cdot1+1^2}+1}{\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}\cdot1+1^2}-1}\)
\(A=\dfrac{\sqrt{\left(\sqrt{3}+1\right)^2}+1}{\sqrt{\left(\sqrt{3}+1\right)^2}-1}\)
\(A=\dfrac{\left|\sqrt{3}+1\right|+1}{\left|\sqrt{3}+1\right|-1}\)
\(A=\dfrac{\sqrt{3}+1+1}{\sqrt{3}+1-1}\)
\(A=\dfrac{\sqrt{3}+2}{\sqrt{3}}\)
\(A=\dfrac{\sqrt{3}\cdot\left(\sqrt{3}+2\right)}{\sqrt{3}\cdot\sqrt{3}}\)
\(A=\dfrac{3+2\sqrt{3}}{3}\)
4. a) (sqrt(6 + 2sqrt(5)))/(sqrt(5) + 1) = (sqrt(5 - 2sqrt(6)))/(sqrt(3) - sqrt(2))
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.
(sqrt(15) - sqrt(5))/(sqrt(3) - 1) - (5 - 2sqrt(5))/(2sqrt(5) - 4)
\(=\sqrt{5}-\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{2\left(\sqrt{5}-2\right)}=\sqrt{5}-\dfrac{\sqrt{5}}{2}=\dfrac{\sqrt{5}}{2}\)
=√5-\(\dfrac{\text{√}5\left(\text{√}5-2\right)}{2\left(\text{√}5-2\right)}\)=√5-\(\dfrac{\text{√5}}{2}\)=\(\dfrac{\text{√ 5}}{2}\)
Bài 1. (2,0 điểm) Thực hiện phép tính: n) 7/9 * sqrt(81) - 1/2 * sqrt(16) . c) (sqrt(8/3) - sqrt(24) + sqrt(50/3)) , sqrt 12 . » sqrt((sqrt(7) - 4) ^ 2) + sqrt(7) 1/(5 + 2sqrt(3)) + 1/(5 - 2sqrt(3))
Gidipt 1) sqrt(x ^ 2 - x) = sqrt(3 - x)
2) sqrt(x ^ 2 - 4x + 3) = x - 2
3) sqrt(4 * (1 - x) ^ 2) - 6 = 0
4) sqrt(x ^ 2 - 4x + 4) = sqrt(4x ^ 2 - 12x + 9)
5) sqrt(x ^ 2 - 4) + sqrt(x ^ 2 + 4x + 4) = 0
6) 1sqrt(x + 2sqrt(x - 1)) + sqrt(x - 2sqrt(x - 1)) = 2
1: =>x^2-x=3-x
=>x^2=3
=>x=căn 3 hoặc x=-căn 3
2: =>x^2-4x+3=x^2-4x+4 và x>=2
=>3=4(vô lý)
3: =>2|x-1|=6
=>|x-1|=3
=>x-1=3 hoặc x-1=-3
=>x=-2 hoặc x=4
4: =>|2x-3|=|x-2|
=>2x-3=x-2 hoặc 2x-3=-x+2
=>x=1 hoặc x=5/3
5: =>\(\sqrt{x+2}\left(\sqrt{x-2}+\sqrt{x+2}\right)=0\)
=>x+2=0
=>x=-2
Chứng minh đẳng thức (sqrt(4 - 2sqrt(3)))/(1 + sqrt(2)) / ((sqrt(2) - 1)/(sqrt(3) + 1)) = 2
\(=\dfrac{\sqrt{3}-1}{\sqrt{2}+1}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}=\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\dfrac{2}{1}=2\)
a) A = (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)) + (sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) b) B = 2sqrt(27) + sqrt((1 - sqrt(3)) ^ 2) - 4/(sqrt(2))
a: \(A=\dfrac{\left(\sqrt{7}+\sqrt{3}\right)^2+\left(\sqrt{7}-\sqrt{3}\right)^2}{4}\)
\(=\dfrac{10+2\sqrt{21}+10-2\sqrt{21}}{4}=\dfrac{20}{4}=5\)
b: \(B=6\sqrt{3}+\sqrt{3}-1-2\sqrt{2}\)
\(=7\sqrt{3}-2\sqrt{2}-1\)
b. B = (sqrt(6 + 2sqrt(5)))/(sqrt(5) + 1) + (sqrt(5 - 2sqrt(6)))/(sqrt(3) - sqrt(2))
Bài 1: (2,5 điểm) Cho biểu thức P= (sqrt(a) + 1)/(sqrt(a) - 2) + (2sqrt(a))/(sqrt(a) + 2) + 2+5 sqrt a 4-a v dot ci a >= 0 a ne4
a) Rút gọn P.
b) Tính giá trị của P với a = 3 - 2sqrt(2)
c) Tìm a để P > 1/3
d) Tim a dé P = 2