\(=\dfrac{\sqrt{3}-1}{\sqrt{2}+1}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}=\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\dfrac{2}{1}=2\)
\(=\dfrac{\sqrt{3}-1}{\sqrt{2}+1}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}=\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}=\dfrac{2}{1}=2\)
Gidipt 1) sqrt(x ^ 2 - x) = sqrt(3 - x)
2) sqrt(x ^ 2 - 4x + 3) = x - 2
3) sqrt(4 * (1 - x) ^ 2) - 6 = 0
4) sqrt(x ^ 2 - 4x + 4) = sqrt(4x ^ 2 - 12x + 9)
5) sqrt(x ^ 2 - 4) + sqrt(x ^ 2 + 4x + 4) = 0
6) 1sqrt(x + 2sqrt(x - 1)) + sqrt(x - 2sqrt(x - 1)) = 2
A = (sqrt(4 + 2sqrt(3)) - 1)/(sqrt(4 + 2sqrt(3)) +2)
a) A = (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)) + (sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) b) B = 2sqrt(27) + sqrt((1 - sqrt(3)) ^ 2) - 4/(sqrt(2))
A = (sqrt(4 + 2sqrt(3)) + 1)/(sqrt(4 + 2sqrt(3)) - 1)
a) 2sqrt(25(x - 3)) - 1/2 * sqrt(4x - 12) + 1/7 * sqrt(49(x - 3)) = 20 b) sqrt(x ^ 2 - 6x + 9) = 2
Bài 2 : Rút gọn biểu thức sau A = sqrt(5 - 2sqrt(6)) - sqrt((sqrt(2) - sqrt(3)) ^ 2)
2: Giải phương trình a) 2sqrt(25(x - 3)) - 1/2 * sqrt(4x - 12) + 1/7 * sqrt(49(x - 3)) = 20 b) sqrt(x ^ 2 - 6x + 9) = 2
Bài 1 :Chứng minh các đẳng thức :
a ) \(2\sqrt{2}\left(\sqrt{3}-2\right)\) + \(\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
b ) \(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)
c ) \(\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}=6\)
Bài 2 : Rút gọn các biểu thức sau :
a ) \(\frac{1}{\sqrt{5}+\sqrt{3}}-\frac{1}{\sqrt{5}-\sqrt{3}}\)
b ) \(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
c ) \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)
Bài 3 : Rút gọn các biểu thức sau :
a ) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
b ) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
c ) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
d ) \(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\sqrt{200}\right):\frac{1}{8}\)
Với n là số tự nhiên, chứng minh đẳng thức :
\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)
Viết đẳng thức trên khi n là 1, 2, 3, 4, 5, 6, 7