a: \(A=\dfrac{\left(\sqrt{7}+\sqrt{3}\right)^2+\left(\sqrt{7}-\sqrt{3}\right)^2}{4}\)
\(=\dfrac{10+2\sqrt{21}+10-2\sqrt{21}}{4}=\dfrac{20}{4}=5\)
b: \(B=6\sqrt{3}+\sqrt{3}-1-2\sqrt{2}\)
\(=7\sqrt{3}-2\sqrt{2}-1\)
a: \(A=\dfrac{\left(\sqrt{7}+\sqrt{3}\right)^2+\left(\sqrt{7}-\sqrt{3}\right)^2}{4}\)
\(=\dfrac{10+2\sqrt{21}+10-2\sqrt{21}}{4}=\dfrac{20}{4}=5\)
b: \(B=6\sqrt{3}+\sqrt{3}-1-2\sqrt{2}\)
\(=7\sqrt{3}-2\sqrt{2}-1\)
a) 2sqrt(25(x - 3)) - 1/2 * sqrt(4x - 12) + 1/7 * sqrt(49(x - 3)) = 20 b) sqrt(x ^ 2 - 6x + 9) = 2
2: Giải phương trình a) 2sqrt(25(x - 3)) - 1/2 * sqrt(4x - 12) + 1/7 * sqrt(49(x - 3)) = 20 b) sqrt(x ^ 2 - 6x + 9) = 2
Bài 1 :
a, \(\dfrac{1}{2}\sqrt{12}+\sqrt{27}-\sqrt{75}\)
b, \(\sqrt{7-4\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)
c, 6\(\sqrt{27}-2\sqrt{75}-\dfrac{1}{2}\sqrt{300}\)
d, \(\dfrac{7}{\sqrt{10}-\sqrt{3}}-\dfrac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}-\dfrac{6}{\sqrt{3}}\)
e, \(\sqrt{\dfrac{\sqrt{5}}{8\sqrt{5}+3\sqrt{35}}}.(3\sqrt{2}+\sqrt{14)}\)
f, \(\sqrt{11-4\sqrt{ }7}+\dfrac{2\sqrt{7}-2}{\sqrt{7}-1}\)
g, \((\sqrt{125}-3\sqrt{3})\dfrac{\sqrt{5}-\sqrt{3}}{8+\sqrt{15}}\)
h, \(\sqrt{100}-\sqrt{64}\)
i, \(\sqrt{(1-\sqrt{3})^2}-\sqrt{3}\)
Bạn nào biết làm bài này thì giúp mình với ạ ! sáng mai mình cần gấp !
bài 1: thực hiện phép tính
a, (\(\sqrt{12}+3\sqrt{15}-4\sqrt{135}\)).\(\sqrt{3}\)
b, A=\(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
c, \(\frac{9\sqrt{5^2+3\sqrt{27}}}{\sqrt{5}+\sqrt{3}}\)
d, \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
e, (\(\sqrt{12}+\sqrt{15}+\sqrt{27}\)):\(\sqrt{15}\)
f, (12\(\sqrt{50}-8\sqrt{200}+7\sqrt{450}\)):\(\sqrt{10}\)
g, (\(\sqrt{\frac{1}{7}}-\sqrt{\frac{16}{7}}+\sqrt{\frac{9}{7}}\)):\(\sqrt{7}\)
bài 2:rút gọn rồi tính các giá trị biểu thức
a, A= \(\sqrt{\frac{\left(x-6\right)^4}{\left(5-x\right)^2}}\)+\(\frac{x^2-36}{x-5}\) (x<5) tại x=4
b, B=5x-\(\sqrt{125}\)+\(\frac{\sqrt{x^3+5x^2}}{\sqrt{x+5}}\) (x ≥ 0)tại x=\(\sqrt{5}\)
tính:
a,\(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
b,\(\sqrt{7-4\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
c,\(\dfrac{x-49}{\sqrt{x}-7}\)
d,\(\sqrt{4+2\sqrt{3}}-\sqrt{13+4\sqrt{3}}\)
e,\(2+\sqrt{17-4\sqrt{9+4\sqrt{45}}}\)
Rút gọn biểu thức:
\(A=\sqrt{\left(2-\sqrt{7}\right)^2}+\left(\sqrt{7}-1\right)^2\)
\(B=3\sqrt{\left(1,5\right)^2}-4\sqrt{\left(3-\sqrt{2}\right)^2}\)
Rút gọn biểu thức:
a,\(\frac{3+\sqrt{5}}{\sqrt{10}+\sqrt{3+\sqrt{5}}}-\frac{3-\sqrt{5}}{\sqrt{10}+\sqrt{3-\sqrt{5}}}\)
\(b,\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
Rút gọn
a.\(\dfrac{\sqrt{7}-5}{2}-\dfrac{6}{\sqrt{7}-2}+\dfrac{1}{3+\sqrt{7}}+\dfrac{3}{5+2\sqrt{7}}\)
b.\(\left(\sqrt{10}+\sqrt{2}\right).\left(6-2\sqrt{5}\right).\sqrt{3+\sqrt{5}}\)
Rút gọn biểu thức
a) \(\sqrt{23+8\sqrt{7}}-\sqrt{7}\)
b) \(\sqrt{4+2\sqrt{3}}-\sqrt{3}\)
c) \(\sqrt{13-4\sqrt{3}}-\left(1+\sqrt{3}\right)^2\)