Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Phương Nhã
Xem chi tiết
Ashshin HTN
6 tháng 7 2018 lúc 15:23

tích đúng mình làm cho

Trần Phương Nhã
6 tháng 7 2018 lúc 15:25

mình không hiểu 

Phương Linh
Xem chi tiết
Thu trang
22 tháng 11 2023 lúc 14:38


ý của bạn là cotang đk ạ chứ mình thấy cos nó sai ýloading...

Tùng Chi Pcy
Xem chi tiết
Thanh Thảo
22 tháng 4 2018 lúc 11:37

Mình viết luôn là sin với cos, bạn tự cho thêm \(\alpha\) nhé.

VT= \(\sin^2.\dfrac{\sin}{\cos}+\cos^2.\dfrac{\cos}{\sin}+2\sin\cos\)

= \(\dfrac{\sin^3}{\cos}+\dfrac{\cos^3}{\sin}+2\sin\cos\)

= \(\dfrac{\sin^4+\cos^4+2\sin^2.\cos^2}{\cos.\sin}\)

= \(\dfrac{\left(\sin^2+\cos^2\right)^2}{\cos.\sin}\)

= \(\dfrac{1}{\sin.\cos}\)(1)

VP = \(\dfrac{\sin}{\cos}+\dfrac{\cos}{\sin}\)

= \(\dfrac{\sin^2+\cos^2}{\cos.\sin}\)

= \(\dfrac{1}{\cos.\sin}\)(2)

từ (1) và (2) => VT=VP (đpcm)

Chúc bạn học tốt!

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 8 2023 lúc 20:11

a: tan x(cot^2x-1)

\(=\dfrac{1}{cotx}\left(cot^2x-cotx\cdot tanx\right)\)

=cotx-tanx/cotx=cotx(1-tan^2x)

b: \(tan^2x-sin^2x=\dfrac{sin^2x}{cos^2x}-sin^2x\)

\(=sin^2x\left(\dfrac{1}{cos^2x}-1\right)=sin^2x\cdot\dfrac{sin^2x}{cos^2x}=sin^2x\cdot tan^2x\)

c: \(\dfrac{cos^2x-sin^2x}{cot^2x-tan^2x}=\dfrac{cos^2x-sin^2x}{\dfrac{cos^2x}{sin^2x}-\dfrac{sin^2x}{cos^2x}}\)

\(=\left(cos^2x-sin^2x\right):\dfrac{cos^4x-sin^4x}{sin^2x\cdot cos^2x}\)

\(=\dfrac{sin^2x\cdot cos^2x}{1}=sin^2x\cdot cos^2x\)

=>sin^2x*cos^2x-cos^2x=cos^2x(sin^2x-1)

=-cos^2x*cos^2x=-cos^4x

=>ĐPCM

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 22:43

a)

Ta có:

\({\cos ^4}\alpha {\sin ^4}\alpha  = \left( {{{\cos }^2}\alpha  - {{\sin }^2}\alpha } \right)\left( {{{\cos }^2}\alpha  + {{\sin }^2}\alpha } \right) \\= {\cos ^2}\alpha  - {\sin ^2}\alpha = {\cos ^2}\alpha  - (1 - {\cos ^2}\alpha ) \\= {\cos ^2}\alpha  - 1 + {\cos ^2}\alpha  = 2{\cos ^2}\alpha  - 1\)

(đpcm)

b)

Ta có:

\(\frac{{{{\cos }^2}\alpha  + {{\tan }^2}\alpha  - 1}}{{{{\sin }^2}\alpha }} = \frac{{{{\cos }^2}\alpha \; + {{\tan }^2}\alpha  - {{\sin }^2}\alpha  - {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} \\= \frac{{{{\tan }^2}\alpha  - {{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} - {{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} \\= \frac{1}{{{{\cos }^2}\alpha }} - 1 = {\tan ^2}\alpha \)

(đpcm)

Hoàng Điệp
Xem chi tiết
Gia Bảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 20:55

1) Vì \(\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{\dfrac{đối}{huyền}}{\dfrac{kề}{huyền}}=\dfrac{đối}{kề}\)

nên \(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}\)

2) Vì \(\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{\dfrac{kề}{huyền}}{\dfrac{đối}{huyền}}=\dfrac{kề}{đối}\)

nên \(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}\)

Hoang Khoi
Xem chi tiết
Phan Nguyễn Hoàng Vinh
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 5 2019 lúc 14:32

\(\frac{sin^2a-cos^2a}{sin^2a+cos^2a+2sina.cosa}=\frac{\left(sina+cosa\right)\left(sina-cosa\right)}{\left(sina+cosa\right)^2}=\frac{sina-cosa}{sina+cosa}\)

\(=\frac{\frac{sina}{cosa}-\frac{cosa}{cosa}}{\frac{sina}{cosa}+\frac{cosa}{cosa}}=\frac{tana-1}{tana+1}\)

phuong thao
15 tháng 9 lúc 12:06

(tan^2 a)/(1 + tan^2 a) * (1 + cot^2 a)/(cot^2 a) = (1 + tan^4 a)/(tan^2 a + tan^2 a)