Bất đẳng thức Cauchy Schwarz???
Cho em hỏi ngu tí ạ :)
Bất đẳng thức Cauchy - Schwarz và Bất thức Svac- xơ có phải là một không ????
Trước giờ chỉ biết bất đẳng thức Svac- xơ thôi :)))
Hai bđt đó là một đấy bạn.
Ngoài ra còn có tên là BĐT Cauchy dạng Engel nữa mà mình ko biết Engel là gì cả?:)
Chữ Svac-xơ được phiên âm từ chữ Schwarz ra mà bạn
Engel là lấy theo tên nhà toán học Đức Arthur Engel thì phải
Cho a,b,c∈Ra,b,c∈R và a2+b2+c2=21a2+b2+c2=21. Chứng minh rằng: 7≤|a−2b|+|b−2c|+|c−2a|≤√3997≤|a−2b|+|b−2c|+|c−2a|≤399 Ý tưởng: ( Nhưng không chắc chắn là đúng hướng :'> ) Dùng bất đẳng thức Cauchy-Schwarz để chứng minh bài toán -> x1+x2+...+xn≤|x1|+|x2|+...+|xn|≤√n(x21+x22+...+x2n)
Dùng bất đẳng thức Schwarz chứng minh bất đẳng thức sau:
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(VT=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(=\dfrac{a^2}{ab+ca}+\dfrac{b^2}{ab+bc}+\dfrac{c^2}{ca+bc}\ge\left(Schwarz\right)\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Mà theo Cô-si ta có:
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\) (hằng đẳng thức)
\(\Rightarrow VT\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c
Đặt b + c = x ; c + a = y ; a + b = z
=> a = (y + z - x) / 2 ; b = (x + z - y) / 2 ; c = (x + y - z) / 2
=> P = a/b+c + b/c+a + c/a+b = (y + z - x) / 2x + (x + z - y) / 2y + (x + y - z) / 2z
= 1/2. (y/x + z/x - 1 + x/y + z/y - 1 + x/z + y/z - 1) = 1/2. (x/y + y/x + x/z + z/x + y/z + z/y - 3)
Áp dụng BĐT A/B + B/A ≥ 0 hoặc Cô-si cũng được
=> P ≥ 1/2. (2 + 2 + 2 - 3) = 3/2 (đpcm)
Dấu = xảy ra <=> x = y = z <=> b+c = c+a = a+b <=> a = b = c
Dùng bất đẳng thức Schwarz chứng minh bất đẳng thức sau:
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(=\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Ta c/m BĐT phụ: \(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\)( b tự c/m nhé. Chuyển vế, c/m VP>=0 là xong )
\(\Rightarrow\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{2.\frac{1}{3}\left(a+b+c\right)^2}=\frac{1}{\frac{2}{3}}=\frac{3}{2}\)
\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
đpcm
\(ab+bc+ca\le\frac{1}{3}.\left(a+b+c\right)^2\)
\(\Leftrightarrow3.\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\)
\(\Leftrightarrow3.\left(ab+bc+ca\right)\le a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)( BĐT luôn đúng)
\(\Rightarrow ab+bc+ca\le\frac{1}{3}.\left(a+b+c\right)^2\)
đpcm
Bất đẳng thức Cauchy - Schwars
Bất đẳng thức AM - GM
Bất đẳng thức Bunhiacopxki
Bất đẳng thức Mincopxki
Cho tớ công thức của các BĐT trên , giúp với@Ace Legona
C-S với Bunhia là 1 và là 1 trg hợp của Holder dạng 2 số \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
AM-GM ng` việt gọi là cô si dạng 2 số \(a^2+b^2\ge2ab\)
Mincopski dạng 2 số \(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a+x\right)^2+\left(b+y\right)^2}\)
* BĐT Cauchy - Schwars = BĐT Bunhiacopxki
- Thông thường :
( a2 + b2 )(c2 + d2 ) \(\ge\left(ac+bd\right)^2\)
Dấu "=" xảy ra tại : \(\dfrac{a}{c}=\dfrac{b}{d}\)
- Tổng quát với các bộ số : a1 , a2 , a3 , ... , an và : b1 , b2 , ... , bn
(a12 + a22 + ... + an2)(b12 + b22 + ... + bn2 ) \(\ge\left(a_1b_1+a_2b_2+...+a_nb_n\right)\)
Dấu "=" xảy ra tại : \(\dfrac{a_1}{b_1}=\dfrac{a_2}{b_2}=...=\dfrac{a_n}{b_n}\)
* BĐT AM-GM
- trung bình nhân (2 số)
với a,b \(\ge0\) , ta luôn có : \(\dfrac{a+b}{2}\ge\sqrt{ab}\) . Dấu "=" xảy ra tại a=b
- Trung bình nhân ( n số )
Với x1 , x1 , x3 ,..., xn \(\ge0\)
Ta luôn có : \(\dfrac{x_1+x_2+...+x_n}{n}\ge\sqrt[n]{x_1x_2.....x_n}\)
Dấu "=" xảy ra khi x1 = x2 =...=xn
-Trung bình hệ số :
Với các bộ số : x1 , x1 , x3 ,..., xn \(\ge0\)và a1, a2 , a3 ,... , an ( a1 , a2 ,..., an) là c1ác hệ số
Ta có : \(\dfrac{a_1x_1+a_2x_2+...+a_nx_n}{a}\ge\sqrt[a]{x_1^{a_1}.x_2^{a_2}.....x_n^{a_n}}\)
Dấu "=" xảy ra khi x1 = x2 = xn
=================
Cái mincopxki t ko biết , ngoài ra còng có BĐT Cauchy - dạng engel => lên googl seach có
Chứng minh bất đẳng thức Cauchy-Schwarz với bộ 3 số
\(\frac{a^2}{b}+\frac{c^2}{d}+\frac{t^2}{k}\ge\frac{\left(a+c+t\right)^2}{b+d+k}\left(a,b,c,d,t,k>0\right)\)
Nếu làm được thì số like nhận được sẽ không hề nhỏ ^^
chứng minh cho 2 số trước sau đó áp dụng cho 3 số nhé
Cách 1: ta chứng minh\(\frac{a^2}{b}+\frac{c^2}{d}\ge\frac{\left(a+c\right)^2}{b+d}\)
Thật vậy \(\frac{a^2d+c^2b}{bd}-\frac{\left(a+c\right)^2}{b+d}\)\(\ge0\)
\(\frac{\Leftrightarrow\left(a^2d+c^2b\right)\left(b+d\right)-\left(a+b\right)^2bc}{\left(b+c\right)bc}\ge0\)
\(\Rightarrow\left(a^2d+c^2b\right)\left(b+d\right)-\left(a+c\right)^2bd\ge0\)
\(\Leftrightarrow\frac{a^2bd+a^2d^2+c^2b^2+c^2bd-a^2bd-2abcd-c^2bd}{ }\ge0\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\left(luônđúng\right)\)
tương tự dùng cho 3 số => đpcm
Cách 2: dùng bđt BUNIACOPSKI. ta có:
\(\left(\frac{a}{\sqrt{b}}.\sqrt{b}+\frac{c}{\sqrt{d}}.\sqrt{d}\right)^2\le\left(\frac{a^2}{b}+\frac{c^2}{d}\right)\left(b+d\right)\)
\(\Leftrightarrow\left(a+c\right)^2\le\)\(\left(\frac{a^2}{b}+\frac{c^2}{d}\right)\left(b+d\right)\)
\(\frac{\Leftrightarrow\left(a+c\right)^2}{b+d}\le\frac{a^2}{b}+\frac{c^2}{d}\) đến đây lại làm tt cách 1
Áp dụng bất đẳng thức cauchy . Tìm GTLN
A = (3 + x)(5 - y) với 3 < x < 5
Đề sai, cho đk x mà ko có đk y sao áp dụng cauchy bây giờ:v
mọi người cho em hỏi là thi vào 10 có được dùng các bất đẳng thức như cauchy mà ko cần chứng minh không ạ?
Cái này thì tùy nơi nha bạn. Nhưng nếu làm bài chuyên thì cứ chơi cái này thoải mái, tại vì nguyên tắc làm bài chuyên là được dùng bất cứ kiến thức gì, miễn là làm được bài thì thôi. Còn nếu thi đề thường thì chỉ được dùng những BĐT quen thuộc thôi nha bạn
Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: \(\frac{a+b}{2}>hoặc=\sqrt{ab}\)
\(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow a+b\ge2\sqrt{ab}\)
<=>\(a+b-2\sqrt{ab}\ge0\)
<=>\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)
=>dpcm