Cho hàm số \(y = {x^3} - 3{{\rm{x}}^2}\). Tiếp tuyến với đồ thị của hàm số tại điểm \(M\left( { - 1;4} \right)\) có hệ số góc bằng:
A. ‒3.
B. 9.
C. ‒9.
D. 72.
Cho hàm số \(y=x^3-\left(m-1\right)x^2+\left(3m+1\right)x+m-2\) . Tìm m để tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng 1 đi qua điểm A(2; -1)
Ta có : \(y'=3x^2-2\left(m-1\right)x+3m+1\)
Gọi \(M\left(x_0;y_0\right)\) là tiếp điểm, ta có : \(x_0=1\Rightarrow y_0=3m+1,y'\left(1\right)=m+6\)
Phương trình tiếp tuyến tại M : \(y=\left(m+6\right)\left(x-1\right)+3m+1\)
Tiếp tuyến đi qua A \(\Leftrightarrow-1=m+6+3m+1\Leftrightarrow m=-2\)
Vậy m = -2 là giá trị cần tìm
a) tìm hệ số góc của tiếp tuyến của đồ thị hàm số y=-x^3+3x-2 (c) tại điểm có hoành độ -3
b) viết phương trình tiếp tuyến của đồ thị hàm số (c) trên tại điểm ( ứng với tiếp điểm ) có hoành độ -3
Cho hàm số \(y=x^2-4x+3\) . Nếu tiếp tuyến của đồ thị hàm số tại điểm M song song với đường thẳng \(-8x+y-2017=0\) thì hoành độ \(x_o\) của M là ?
Ủa hỏi mỗi hoành độ thôi hở :D?
\(f'\left(x\right)=2x-4\)
Vi \(pttt//d:y=8x+2017\Rightarrow f'\left(x\right)=8\)
\(\Rightarrow2x-4=8\Leftrightarrow x=6\)
Cho hàm số \(y=f\left(x\right)\) xác định và có đạo hàm trên R thỏa mãn: \(\left[f\left(1+2x\right)\right]^3=8x-\left[f\left(1-x\right)\right]^2\), ∀x∈R. viết phương trình tiếp tuyến của đồ thị hàm số \(y=f\left(x\right)\) tại điểm có hoành độ bằng 1.
Gọi M là giao điểm của đồ thị hàm số y = x + 1 x − 2 với trục hoành. Phương trình tiếp tuyến với đồ thị hàm số trên tại điểm M là:
A. 3 y + x + 1 = 0
B. 3 y + x − 1 = 0
C. 3 y − x + 1 = 0
D. 3 y − x − 1 = 0
Gọi M là giao điểm của đồ thị hàm số y = x + 1 x − 2 với trục hoành. Phương trình tiếp tuyến với đồ thị hàm số trên tại điểm M là
A. 3 y + x + 1 = 0
B. 3 y + x − 1 = 0
C. 3 y − x + 1 = 0
D. 3 y − x − 1 = 0
Đáp án A
Điều kiện: x ≠ 2. Do M là giao điểm của đồ thị hàm số y = x + 1 x − 2 với trục hoành nên M − 1 ; 0
Ta có y ' = − 3 x − 2 2 nên hệ số góc của tiếp tuyến tại M là k = y ' − 1 = − 1 3
Do đó suy ra phương trình tiếp tuyến là y = − 1 3 x − 1 3 x + 3 y + 1
Cho hàm số \(y = {x^3} - 3{x^2} + 4x - 1\) có đồ thị là \((C)\). Hệ số góc nhỏ nhất của tiếp tuyến tại một điểm \(M\) trên đồ thị \((C)\) là
A. 1 .
B. 2.
C. -1 .
D. 3 .
\(y'=\left(x^3-3x^2+4x-1\right)'=3x^2-3\cdot2x+4\)
\(=3x^2-6x+3+1=3\left(x-1\right)^2+1>=1\)
Dấu = xảy ra khi x=1
=>Chọn A
Cho hàm số $y=f\left( x \right)={{x}^{3}}-3{{x}^{2}}+x-1$ có đồ thị là đường cong $\left( C \right)$. Viết phương trình tiếp tuyến của (C) tại điểm có hoành độ bằng $1$.
Ta có y′=3x2−6x+1y′=3x2−6x+1.
Gọi M(x0;y0)M(x0;y0) là tiếp điểm.
Ta có x0=1x0=1 do đó y0=13−3.12+1−1=−2y0=13−3.12+1−1=−2 ;
y′(1)=3.12−6.1+1=−2y′(1)=3.12−6.1+1=−2.
Vậy phương trình tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 11 là y=y′(1)(x−1)+(−2)⇒y=−2x
Có bao nhiêu điểm M thuộc đồ thị hàm số f x = x 3 + 1 sao cho tiếp tuyến của đồ thị hàm số f(x) tại M song song với đường thẳng d: y=3x-1.
A. 3
B. 2
C. 0
D. 1