Những câu hỏi liên quan
Bùi Đức Anh
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 6 2021 lúc 15:23

Ta có: \(P\le\dfrac{a}{2a+2b+2}+\dfrac{b}{2b+2c+2}+\dfrac{c}{2c+2a+2}\)

Nên ta chỉ cần chứng minh:

\(\dfrac{a}{a+b+1}+\dfrac{b}{b+c+1}+\dfrac{c}{c+a+1}\le1\)

\(\Rightarrow\dfrac{a}{a+b+1}-1+\dfrac{b}{b+c+1}-1+\dfrac{c}{c+a+1}-1\le-2\)

\(\Leftrightarrow\dfrac{b+1}{a+b+1}+\dfrac{c+1}{b+c+1}+\dfrac{a+1}{c+a+1}\ge2\)

Thật vậy, ta có:

\(VT=\dfrac{\left(a+1\right)^2}{\left(a+1\right)\left(a+c+1\right)}+\dfrac{\left(b+1\right)^2}{\left(b+1\right)\left(a+b+1\right)}+\dfrac{\left(c+1\right)^2}{\left(c+1\right)\left(b+c+1\right)}\)

\(VT\ge\dfrac{\left(a+b+c+3\right)^2}{ab+bc+ca+3\left(a+b+c\right)+6}=\dfrac{2\left(ab+bc+ca\right)+6\left(a+b+c\right)+12}{ab+bc+ca+3\left(a+b+c\right)+6}=2\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
ILoveMath
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 11 2021 lúc 8:25

\(\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{b}\Leftrightarrow ab=bc+ac\Leftrightarrow2ab-2bc-2ac=0\\ \Leftrightarrow\sqrt{a^2+b^2+c^2}=\sqrt{a^2+b^2+c^2+2ab-2bc-2ac}\\ =\sqrt{\left(a+b-c\right)^2}=\left|a+b-c\right|\left(dpcm\right)\)

Bình luận (0)
ILoveMath
9 tháng 11 2021 lúc 8:48

Câu 23:

https://olm.vn/hoi-dap/detail/1732532846797.html

Bình luận (0)
Vũ Đình Thái
Xem chi tiết
Vũ Đình Thái
25 tháng 4 2021 lúc 20:24

\(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\)

\(=\dfrac{a^3+ab^2-ab^2}{a^2+b^2}+\dfrac{b^3+bc^2-bc^2}{b^2+c^2}+\dfrac{c^3+ca^2-ca^2}{c^2+a^2}\)

\(=\dfrac{a\left(a^2+b^2\right)}{a^2+b^2}+\dfrac{b\left(b^2+c^2\right)}{b^2+c^2}+\dfrac{c\left(c^2+a^2\right)}{c^2+a^2}-\left(\dfrac{ab^2}{a^2+b^2}+\dfrac{bc^2}{b^2+c^2}+\dfrac{ca^2}{c^2+a^2}\right)\)\(=a+b+c-\left(\dfrac{ab^2}{a^2+b^2}+\dfrac{bc^2}{b^2+c^2}+\dfrac{ca^2}{c^2+a^2}\right)\)\(\ge6-\left(\dfrac{ab^2}{2ab}+\dfrac{bc^2}{2bc}+\dfrac{ca^2}{2ca}\right)=6-\dfrac{a+b+c}{2}=6-\dfrac{6}{2}=3\)      (dpcm)Dau = xay ra khi a=b=c=2
Bình luận (1)
bingu Tao
Xem chi tiết
Lê Song Phương
17 tháng 12 2023 lúc 21:57

Ta có \(\dfrac{1}{a^3\left(b+c\right)}=\dfrac{1}{\dfrac{1}{b^3c^3}\left(b+c\right)}=\dfrac{b^2c^2}{\dfrac{1}{b}+\dfrac{1}{c}}\)

Tương tự \(\Rightarrow VT=\dfrac{b^2c^2}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{c^2a^2}{\dfrac{1}{c}+\dfrac{1}{a}}+\dfrac{a^2b^2}{\dfrac{1}{a}+\dfrac{1}{b}}\)

\(\ge\dfrac{\left(ab+bc+ca\right)^2}{2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)}\) (BĐT B.C.S)

\(=\dfrac{\left(ab+bc+ca\right)^2}{2\left(\dfrac{ab+bc+ca}{abc}\right)}\)

\(=\dfrac{ab+bc+ca}{2}\) (do \(abc=1\))

\(\ge\dfrac{3\sqrt[3]{abbcca}}{2}\)

\(=\dfrac{3\left(\sqrt[3]{abc}\right)^2}{2}=\dfrac{3}{2}\) (do \(abc=1\))

ĐTXR \(\Leftrightarrow a=b=c=1\)

Bình luận (0)
Nhàn Nguyễn
Xem chi tiết
 Mashiro Shiina
22 tháng 12 2018 lúc 19:29

Áp dụng bđt AM-GM:

\(M\ge\dfrac{a^3}{a^2+\dfrac{a^2+b^2}{2}+b^2}+\dfrac{b^3}{b^2+\dfrac{b^2+c^2}{2}+c^2}+\dfrac{c^3}{c^2+\dfrac{a^2+c^2}{2}+a^2}\)

\(=\dfrac{a^3}{\dfrac{3}{2}\left(a^2+b^2\right)}+\dfrac{b^3}{\dfrac{3}{2}\left(b^2+c^2\right)}+\dfrac{c^3}{\dfrac{3}{2}\left(c^2+a^2\right)}\)

\(=\dfrac{2}{3}\left(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\right)\)

Xét:

\(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\)

\(=a-\dfrac{ab^2}{a^2+b^2}+b-\dfrac{b^2c}{b^2+c^2}+c-\dfrac{c^2a}{c^2+a^2}\)

\(\ge a+b+c-\dfrac{ab^2}{2ab}-\dfrac{b^2c}{2bc}-\dfrac{c^2a}{2ac}=a+b+c-\dfrac{a}{2}-\dfrac{b}{2}-\dfrac{c}{2}=\dfrac{a+b+c}{2}=\dfrac{3}{2}\)

\(\Leftrightarrow M\ge1."="\Leftrightarrow a=b=c=1\)

Bình luận (2)
Nguyễn Hồng Phúc
Xem chi tiết
Hi Mn
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 1 2023 lúc 12:06

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}=\dfrac{1}{c\left(a^2+b^2\right)}+\dfrac{1}{a\left(b^2+c^2\right)}+\dfrac{1}{b\left(c^2+a^2\right)}\)

\(\ge\dfrac{9}{a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)}\ge\dfrac{9}{2\left(a^3+b^3+c^3\right)}\)

\(\Rightarrow P\ge a^3+b^3+c^3+\dfrac{9}{2\left(a^3+b^3+c^3\right)}\ge3\sqrt[3]{\left(\dfrac{a^3+b^3+c^3}{2}\right)^2.\dfrac{9}{2\left(a^3+b^3+c^3\right)}}\)

\(=3\sqrt[3]{\dfrac{9\left(a^3+b^3+c^3\right)}{8}}\ge3\sqrt[3]{\dfrac{27abc}{8}}=\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
AEri Sone
Xem chi tiết
Bolbbalgan4
10 tháng 10 2018 lúc 12:12

Với a, b, c là các số dương.

Ta có: \(\dfrac{1}{a+b+1}+\dfrac{1}{b+c+1}+\dfrac{1}{c+a+1}=2\)

\(\Rightarrow\) \(\dfrac{1}{a+b+1}=\left(1-\dfrac{1}{b+c+1}\right)+\left(1-\dfrac{1}{c+a+1}\right) \)

\(=\dfrac{b+c}{b+c+1}+\dfrac{c+a}{c+a+1}\)

\(\ge2\sqrt{\dfrac{\left(b+c\right)\left(c+a\right)}{\left(b+c+1\right)\left(c+a+1\right)}}>0\) (Bất đẳng thức Cô-si)

Tương tự: \(\dfrac{1}{b+c+1}\ge2\sqrt{\dfrac{\left(c+a\right)\left(a+b\right)}{\left(c+a+1\right)\left(a+b+1\right)}}>0\)

\(\dfrac{1}{c+a+1}\ge2\sqrt{\dfrac{\left(a+b\right)\left(b+c\right)}{\left(a+b+1\right)\left(b+c+1\right)}}>0\)

Nhân vế theo vế ba bất đẳng thức trên, ta được:

\(\dfrac{1}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\) \(\ge\dfrac{8\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\)

\(\Rightarrow\) \(1\ge8\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Rightarrow\) \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\dfrac{1}{8}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\dfrac{1}{4}\).

Vậy giá trị lớn nhất của tích \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\) bằng \(\dfrac{1}{8}\) khi và chỉ khi \(a=b=c=\dfrac{1}{4}\).

Bình luận (0)
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 4 2021 lúc 21:19

\(\left(a^3+b^2+c\right)\left(\dfrac{1}{a}+1+c\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow\dfrac{a^3+b^2+c}{a}\ge\dfrac{\left(a+b+c\right)^2}{1+a+ac}=\dfrac{9}{1+a+ac}\)

\(\Rightarrow\dfrac{a}{a^3+b^2+c}\le\dfrac{1+a+ac}{9}\)

Tương tự: \(\dfrac{b}{b^3+c^2+a}\le\dfrac{1+b+ab}{9}\)\(\dfrac{c}{c^3+a^2+b}\le\dfrac{1+c+bc}{9}\)

Cộng vế:

\(P\le\dfrac{3+a+b+c+ab+bc+ca}{9}\le\dfrac{6+\dfrac{1}{3}\left(a+b+c\right)^3}{9}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)