chứng minh biểu thức sau luôn luôn dương:
A=x2-6x+y2+8y+27
Chứng minh rằng biểu thức sau luôn luôn dương với mọi x,y
B=x2-2x+y2+4y+6
\(B=x^2-2x+y^2+4y+6=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
\(B=x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
cho hình thang cân , đáy nhỏ AB đáy lớn CD . Góc nhọn hợp từ hai đường chéo AC và BD bằng \(60^o\)gọi M,N là hình chiếu của B và C lên AC và BD , p là trung điểm cạnh BC . Cm tam giác MNP là tam giác đều
chứng minh rằng các biểu thức sau luôn có giá trị dương:
A=x^2-4x+18 B=x^2-x+2 C=x^2+2y^2-2xy-2y+15
Phần C hơi khó không làm cx đc :>
`A=x^2 -4x+18`
`=x^2 -4x+4+14`
`=(x-2)^2 +14`
Có `(x-2)^2 >=0 AAx`
`=> (x-2)^2 +14>= 14>0 AAx`
Vậy ....
`B=x^2 -x+2`
`=x^2 -x+1/4+7/4`
`=(x-1/2)^2 +7/4`
có `(x-1/2)^2 >=0 AAx`
`=> (x-1/2)^2 +7/4>=7/4>0 AAx`
Vậy ...........
`C=x^2 +2y^2 -2xy-2y+15`
`=x^2 -2xy+y^2 +y^2 -2y+1+14`
`=(x-y)^2 +(y-1)^2 +14`
Có `(x-y)^2 >=0 AAx,y` ; `(y-1)^2 >=0 AAy`
`=>(x-y)^2 +(y-1)^2 +14 >=14>0 AAx;y`
Vậy
Chứng minh mọi giá trị của biểu thức thì giá trị của biểu thức sau luôn dương:
B=x2-2*x*y+2*y2+2*x-10*y+17;
C=x2-2*x*y+3*y2-2*x-10*y+20
B = \(x^2\) - 2\(xy\) + 2y\(^2\) + 2\(x\) - 10y + 17
B = (\(x^2\) - 2\(xy\) + y2) + 2(\(x-y\)) + 1 + (y2 - 8y + 16)
B = (\(x-y\))2 + 2(\(x-y\)) + 1 + (y - 4)2
B = (\(x-y\) + 1)2 + (y - 4)2
(\(x-y+1\))2 ≥ 0 ∀ \(x;y\); (y - 4)2 ≥ 0
B ≥ 0
Kết luận biểu thức không âm. Chứ không phải là biểu thức luôn dương em nhé. Vì dương thì biểu thức phải > 0 ∀ \(x;y\). Mà số 0 không phải là số dương.
Bài 4: Chứng minh rằng các biểu thức sau luôn luôn âm với mọi giá trị của biến a) M=-x² + 6x – 12 b) N= - 3x-x2 – 4 c)P =- 3x2+ 6x+20 d) Q= - 4x2 + 8x- 9y² – 6y – 35
Chứng minh mọi giá trị của biểu thức thì giá trị của biểu thức sau luôn dương:
C=x2-2*x*y+3*y2-2*x-10*y+20
mik cần gấp
Chứng minh mọi giá trị của biểu thức thì giá trị của biểu thức sau luôn dương:
B=x2-2*x*y+2*y2+2*x-10*y+17;
C=x2-2*x*y+3*y2-2*x-10*y+20
Giải giúp mik bài này với.
lập phương trình tiếp tuyến chung của hai đường tròn
C1 : x2 + y2-4y - 5 = 0
C2 : x2 + y2 - 6x + 8y + 16 = 0
cho mình cách giải chi tiết luôn nha !!
(C1) tâm I1(0;2) và R1= 3;
(C2) tâm I2( 3;-4) và R2= 3
- Nhận xét :
không cắt C2
- Gọi d: ax+ by+ c= 0 là tiếp tuyến chung , thế thì : d(I1; d) = R1 và d (I2; d) = R2
- Trường hợp: a= 2b thay vào (1):
- Do đó ta có hai đường thẳng cần tìm :
- Trường hợp :
thay vào :
-Có 2 đường thẳng : d3: 2x- 1 = 0 và d4: 6x + 8y -1= 0.
Có tất cả 4 tiếp tuyến chung.
Chứng minh mọi giá trị của biểu thức thì giá trị của biểu thức sau luôn dương:
B=x2-2*x*y+2*y2+2*x-10*y+17;
C=x2-2*x*y+3*y2-2*x-10*y+20
Giải giúp mik bài này với mik đang cần gấp
`B = x^2- 2xy + y^2 + 2x - 10y + 17
`2B = 2x^2 - 4xy + 2y^2 + 4x - 20y + 34`
`= (x-y)^2 + (x+2)^2 + (y-5)^2 + 5 >= 5`.
Chứng minh các phân thức sau luôn xác định với mọi x
x 2 + 2 x + 3 - 12 + 6 x - x 2