Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tống Nhã Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 17:59

=1/50-(1-1/2+1/2-1/3+...+1/49-1/50)

=1/50-1+1/50

=1/25-1=-24/25

『Kuroba ム Tsuki Ryoo...
15 tháng 6 2023 lúc 18:06

`@` `\text {Ans}`

`\downarrow`

\(\dfrac{1}{50}-\dfrac{1}{50\cdot49}-\dfrac{1}{49\cdot48}-...-\dfrac{1}{2\cdot1}\)

`=`\(\dfrac{1}{50}-\left(\dfrac{1}{50\cdot49}+\dfrac{1}{49\cdot48}+...+\dfrac{1}{2\cdot1}\right)\)

`=`\(\dfrac{1}{50}-\left(\dfrac{1}{50}-\dfrac{1}{49}+\dfrac{1}{49}-\dfrac{1}{48}+...+\dfrac{1}{2}-1\right)\)

`=`\(\dfrac{1}{50}-\left(\dfrac{1}{50}-1\right)\)

`=`\(\dfrac{1}{50}-\left(-\dfrac{49}{50}\right)\)

`= 1`

GOT7 JACKSON
Xem chi tiết
Trịnh Hoài Thương
10 tháng 10 2018 lúc 14:11

A= \(\dfrac{1}{3}-\dfrac{3}{5}+\dfrac{5}{7}-\dfrac{7}{9}+\dfrac{9}{11}-\dfrac{5}{7}+\dfrac{3}{5}-\dfrac{9}{11}=\dfrac{1}{3}-\dfrac{7}{9}=\dfrac{3}{9}-\dfrac{7}{9}=-\dfrac{4}{9}\)

Nguyễn Lê Phước Thịnh
12 tháng 10 2022 lúc 15:38

\(B=\left(\dfrac{1}{5}+\dfrac{2}{15}+\dfrac{2}{3}\right)+\left(-\dfrac{2}{7}+\dfrac{1}{42}-\dfrac{13}{28}-\dfrac{1}{4}\right)\)

\(=\dfrac{3+2+10}{15}+\dfrac{-2\cdot12+2-13\cdot3-21}{84}\)

=1-82/84

=2/84=1/42

\(C=\dfrac{1}{50}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\right)\)

\(=\dfrac{1}{50}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)

\(=\dfrac{1}{50}-1+\dfrac{1}{50}=\dfrac{1}{25}-1=-\dfrac{24}{25}\)

\(D=\dfrac{3\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}{11\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{13}\right)}=\dfrac{3}{11}\)

Xem chi tiết
Nguyễn Thị Ngọc Ánh
Xem chi tiết
Lily
30 tháng 8 2019 lúc 14:13

Ta có : 

\(A=\frac{1}{2003\cdot2002}-\frac{1}{2002\cdot2001}-...-\frac{1}{3\cdot2}-\frac{1}{2\cdot1}\)

\(A=-\left(\frac{1}{2003\cdot2002}+\frac{1}{2002\cdot2001}+...+\frac{1}{3\cdot2}+\frac{1}{2\cdot1}\right)\)

\(A=-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2001\cdot2002}+\frac{1}{2002\cdot2003}\right)\)

\(A=-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2001}-\frac{1}{2002}+\frac{1}{2002}-\frac{1}{2003}\right)\)

\(A=-\left(1-\frac{1}{2003}\right)\)

\(A=-\frac{2002}{2003}\)

❤Edogawa Conan❤
30 tháng 8 2019 lúc 14:37

\(A=\frac{1}{2003.2002}-\frac{1}{2002.2001}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2001.2002}\right)+\frac{1}{2002}.\frac{1}{2003}\)

\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2001}-\frac{1}{2002}\right)+\frac{1}{2002}.\frac{1}{2003}\)

\(=-\left(1-\frac{1}{2002}\right)+\frac{1}{2002}.\frac{1}{2003}\)

\(=-1+\frac{1}{2002}.+\frac{1}{2002}.\frac{1}{2003}\)

\(=-1+\frac{1}{2002}\left(1+\frac{1}{2003}\right)\)

\(=-1+\frac{1}{2002}.\frac{2004}{2003}\)

\(=-1+\frac{2}{2003}\)

\(=\frac{-2003+2}{2003}\)

\(=\frac{-2001}{2003}\)

Mỹ Tâm Lê Thị
Xem chi tiết
Nguyễn Huy Tú
11 tháng 9 2016 lúc 21:41

Câu này mk giải rùi mà

Nguyễn Huy Tú
11 tháng 9 2016 lúc 21:43

link nè bạn 

/hoi-dap/question/88514.html

hoặc bạn sang trang 3 của hỏi đáp toán hoc24 sẽ thấy nhé

Hân :3
Xem chi tiết
Nguyễn Hoàng Minh
18 tháng 11 2021 lúc 11:45

\(a,A=\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2009}+\dfrac{1}{2008}-...-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{2}+1\\ A=1+\dfrac{1}{2010}=\dfrac{2011}{2010}\)

\(b,B=\left(-124\right)\left(63-37\right)+\dfrac{17}{66}\left(-66\right)=-124\cdot26+17=-3224+17=-3207\)

Mỹ Tâm
Xem chi tiết
Trần Tú QUYÊN
Xem chi tiết
Lily
30 tháng 8 2019 lúc 14:18

Bạn tham khảo ở lcik này ! Mình mới trả lời ở đó !

Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath

https://olm.vn/hoi-dap/detail/228829251573.html

Nguyễn Lê Hoàng Hạnh
Xem chi tiết
Sherlockichi Kudoyle
12 tháng 7 2016 lúc 8:18

\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)

\(C=\frac{1}{100}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(C=\frac{1}{100}-\left(\frac{1}{1}-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=\frac{-98}{100}=\frac{-49}{50}\)