=1/50-(1-1/2+1/2-1/3+...+1/49-1/50)
=1/50-1+1/50
=1/25-1=-24/25
`@` `\text {Ans}`
`\downarrow`
\(\dfrac{1}{50}-\dfrac{1}{50\cdot49}-\dfrac{1}{49\cdot48}-...-\dfrac{1}{2\cdot1}\)
`=`\(\dfrac{1}{50}-\left(\dfrac{1}{50\cdot49}+\dfrac{1}{49\cdot48}+...+\dfrac{1}{2\cdot1}\right)\)
`=`\(\dfrac{1}{50}-\left(\dfrac{1}{50}-\dfrac{1}{49}+\dfrac{1}{49}-\dfrac{1}{48}+...+\dfrac{1}{2}-1\right)\)
`=`\(\dfrac{1}{50}-\left(\dfrac{1}{50}-1\right)\)
`=`\(\dfrac{1}{50}-\left(-\dfrac{49}{50}\right)\)
`= 1`