Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thayhungggg
Xem chi tiết
Thư Nguyễn Anh
Xem chi tiết
Lấp La Lấp Lánh
29 tháng 8 2021 lúc 10:02

\(x^4-2x^3+3x^2-4x+2005=\left(x^4-2x^3+x^2\right)+2\left(x^2-2x+1\right)+2003=\left(x^2-x\right)^2+2\left(x-1\right)^2+2003\)

Vì \(\left(x^2-x\right)^2\ge0\forall x,\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow x^4-2x^3+3x^2-4x+2005\ge0+0+2013=2013\)

\(ĐTXR\Leftrightarrow x=1\)

Vũ Đức Minh
Xem chi tiết
Vũ Đức Minh
3 tháng 5 2023 lúc 12:48

Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!

Nguyễn Lê Phước Thịnh
11 tháng 5 2023 lúc 14:56

a:6x-5-9x^2

=-(9x^2-6x+5)

=-(9x^2-6x+1+4)

=-(3x-1)^2-4<=-4

=>A>=2/-4=-1/2

Dấu = xảy ra khi x=1/3

b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)

2x^2-3x+2=2(x^2-3/2x+1)

=2(x^2-2*x*3/4+9/16+7/16)

=2(x-3/4)^2+7/8>=7/8

=>-1/2x^2-3x+2<=-1:7/8=-8/7

=>B<=-8/7+2=6/7

Dâu = xảy ra khi x=3/4

Big City Boy
Xem chi tiết
Akai Haruma
9 tháng 10 2021 lúc 9:27

Lời giải:
ĐKXĐ: $-2\leq x\leq 7$

Áp dụng BĐT dạng $\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}$ (BĐT đã khá quen thuộc trong SGK rồi) ta có:

$M\geq \sqrt{4x+8+21-3x}=\sqrt{29+x}\geq \sqrt{29+(-2)}=3\sqrt{3}$ do $x\geq -2$

Vậy $M_{\min}=3\sqrt{3}$ khi $x=-2$

đỗ thanh hà
Xem chi tiết
Đinh Đức Hùng
23 tháng 7 2017 lúc 12:19

\(A=x^4-2x^3+3x^2-4x+7\)

\(=\left(x^4-2x^3+x^2\right)+\left(2x^2-4x+2\right)+5\)

\(=\left(x^2-x\right)^2+2\left(x-1\right)^2+5\ge5\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2-x=0\\x-1=0\end{cases}\Rightarrow x=1}\)

Vậy \(A_{min}=5\Leftrightarrow x=1\)

Nguyễn Hương Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 12 2022 lúc 21:27

a: =-x^2+6x-4

=-(x^2-6x+4)

=-(x^2-6x+9-5)

=-(x-3)^2+5<=5

Dấu = xảy ra khi x=3

b: =3(x^2-5/3x+7/3)

=3(x^2-2*x*5/6+25/36+59/36)

=3(x-5/6)^2+59/12>=59/12

Dấu = xảy ra khi x=5/6

c: \(=-\left(x-3\right)^2+2\left|x-3\right|\)

\(=-\left[\left(\left|x-3\right|\right)^2-2\left|x-3\right|+1-1\right]\)

\(=-\left(\left|x-3\right|-1\right)^2+1< =1\)

Dấu = xảy ra khi x=4 hoặc x=2

Nguyễn Kim Chi
Xem chi tiết
Kiệt Nguyễn
4 tháng 10 2020 lúc 21:50

\(A=x^4-3x^3+4x^2-3x+10=\left(x^4-3x^3+4x^2-3x+1\right)+9=\left(x-1\right)^2\left(x^2-x+1\right)+9\ge9\)(do \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\x^2-x+1>0\forall x\end{cases}}\))

Đẳng thức xảy ra khi x = 1

Khách vãng lai đã xóa
Hiền Thảo Bùi
Xem chi tiết
Bùi Hiền Thảo
Xem chi tiết