tính (thu gọn) :(2x-1).(3x+5)+(-6x mũ3 +5x):x
bài 2: cho đa thức
A(x)=5/6x mũ3 - 12/7x mũ2+5x+5/7x mux2 +1/6x mux3 - 3x+9
Thu gọn các biểu thức : a) 6x^2y(3xy-2xy^2+y) b) (-3x+2)(5x^2-1/3x+4) c) (x+1)(x-2)+x(3-x) d) (2x+3)^2-(2x-5)(2x+5)-(x-1)(x^12+12)
a: =18x^3y^2-12x^3y^3+6x^2y^2
b: (-3x+2)(5x^2-1/3x+4)
=-12x^3+x^2-12x+10x^2-2/3x+8
=-12x^3+11x^2-38/3x+8
c: =x^2-x-2+3x-x^2
=2x-2
d: =4x^2+12x+9-4x^2+25-(x-1)(x^2+12)
=12x+34-x^3-12x+x^2+12
=-x^3+x^2+46
thu gọn biểu thức
a) (6x-2)2+4(3x-1)(2+y)+(y+2)2-(6x+y)2
b)5(2x-1)2+2(x-1)(x+3)-2(5-2x)2-2x(7x+12)
c)2(5x-1)(x2-5x+1)+(x2-5x+1)2+(5x-1)2-(x2-1)(x2+1)
d)(x2+4)2-(x2+4)(x2-4)(x2+16)-8(x-4)(x+4)
`#3107`
`a)`
`(6x - 2)^2 + 4(3x - 1)(2 + y) + (y + 2)^2 - (6x + y)^2`
`= [(6x - 2)^2 - (6x + y)^2] + 4(3x - 1)(2 + y) + (2 + y)^2`
`= (6x - 2 - 6x - y)(6x -2 + 6x + y) + (2 + y)*[ 4(3x - 1) + 2 + y]`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x - 4 + 2 + y)`
`= (2 - y)(12x + y - 2) + (2 + y)*(12x + y - 2)`
`= (12x + y - 2)(2 - y + 2 + y)`
`= (12x + y - 2)*4`
`= 48x + 4y - 8`
`b)`
\(5(2x-1)^2+2(x-1)(x+3)-2(5-2x)^2-2x(7x+12)\)
`= 5(4x^2 - 4x + 1) + 2(x^2 + 2x - 3) - 2(25 - 20x + 4x^2) - 14x^2 - 24x`
`= 20x^2 - 20x + 5 + 2x^2 + 4x - 6 - 50 + 40x - 8x^2 - 14x^2 - 24x`
`= - 51`
`c)`
\(2(5x-1)(x^2-5x+1)+(x^2-5x+1)^2+(5x-1)^2-(x^2-1)(x^2+1)\)
`= [ 2(5x - 1) + x^2 - 5x + 1] * (x^2 - 5x + 1) + (5x - 1)^2 - [ (x^2)^2 - 1]`
`= (10x - 2 + x^2 - 5x + 1) * (x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= (x^2 + 5x - 1)(x^2 - 5x + 1) + (5x - 1)^2 - x^4 + 1`
`= x^4 - (5x - 1)^2 + (5x - 1)^2 - x^4 + 1`
`= 1`
`d)`
\((x^2+4)^2-(x^2+4)(x^2-4)(x^2+16)-8(x-4)(x+4)\)
`= (x^2 + 4)*[x^2 + 4 - (x^2 - 4)(x^2 + 16)] - 8(x^2 - 16)`
`= (x^2 + 4)(x^4 + 12x^2 - 64) - 8x^2 + 128`
`= x^6 + 16x^4 - 16x^2 - 256 - 8x^2 + 128`
`= x^6 + 16x^4 - 24x^2 - 128`
cho 2 đa thức: P(x)= x^4-5x^3-1-7x^2=2x-2x^4 Q(x)= 3x^4+6x^2=5x^3=5-2x^4-2x a) thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm dần của biến
giải giúp mik với
a: P(x)=x^4-2x^4-5x^3-7x^2+2x-1
=-x^4-5x^3-7x^2+2x-1
Q(x)=3x^4-2x^4+5x^3+6x^2-2x+5
=x^4+5x^3+6x^2-2x+5
Cho F(x)=3x^2-7+5x-6x^2-4x^2+8
G(x)=x^4+2x-1+2x^4+3x^3+2-x
a,Thu gọn và tìm bặc của F và G
b,Tính F+G và F -G
`@` `\text {Ans}`
`\downarrow`
`a,`
` F(x)=3x^2-7+5x-6x^2-4x^2+8`
`= (3x^2 - 6x^2 - 4x^2) + 5x + (-7 + 8)`
`= -7x^2 + 5x + 1`
Bậc của đa thức: `2`
`G(x)=x^4+2x-1+2x^4+3x^3+2-x`
`= (x^4 + 2x^4) + 3x^3 + (2x - x) + (-1+2)`
`= 3x^4 + 3x^3 + x + 1`
Bậc của đa thức: `4`
`b,`
`F(x) + G(x) = (-7x^2 + 5x + 1)+(3x^4 + 3x^3 + x + 1)`
`= -7x^2 + 5x + 1+3x^4 + 3x^3 + x + 1`
`= 3x^4 + 3x^3 - 7x^2 + (5x + x) + (1+1)`
`= 3x^4 + 3x^3 - 7x^2 + 6x + 2`
`F(x) - G(x) = (-7x^2 + 5x + 1) - (3x^4 + 3x^3 + x + 1)`
`= -7x^2 + 5x + 1 - 3x^4 - 3x^3 - x - 1`
`= -3x^4 - 3x^3 - 7x^2 + (5x - x) + (1-1)`
`= -3x^4 - 3x^3 - 7x^2 + 4x`
a/
\(F\left(x\right)=\left(3-6-4\right)x^2+5x+\left(-7+8\right)=-7x^2+5x+1\) -> Đa thức bậc 2
\(G\left(x\right)=\left(1+2\right)x^4+3x^3+\left(2-1\right)x+\left(-1+2\right)=3x^4+3x^3+x+1\) -> Đa thức bậc 4
b/
\(F\left(x\right)+G\left(x\right)=-7x^2+5x+1+3x^4+3x^3+x+1\\ =3x^4+3x^3-7x^2+6x+2\)
\(F\left(x\right)-G\left(x\right)=-7x^2+5x+1-3x^4-3x^3-x-1\\ =-3x^4-3x^3-7x^2+4x\)
P(x)=-2x^4-7x+1/2-6x^4+2x^2-x
Q(x)=3x^3-x^4-5x^2+x^3-6x+3/4
a)Thu gọn các đa thức trên
b)tính P(x)+Q(x);P(x)-Q(x) theo hàng dọc
\(P\left(x\right)=-2x^4-7x+\dfrac{1}{2}-6x^4+2x^2-x\)
\(P\left(x\right)=\left(-2x^4-6x^4\right)-\left(7x+x\right)+2x^2+\dfrac{1}{2}\)
\(P\left(x\right)=-8x^4-8x+2x^2+\dfrac{1}{2}\)
______
\(Q\left(x\right)=3x^3-x^4-5x^2+x^3-6x+\dfrac{3}{4}\)
\(Q\left(x\right)=\left(3x^3+x^3\right)-x^4-5x^2-6x+\dfrac{3}{4}\)
\(Q\left(x\right)=4x^3-x^4-5x^2-6x+\dfrac{3}{4}\)
Cho đa thức: A(x) = 2x^4 – 5x^3 + 7x – 5 + 4x^3 + 3x^2 + 2x + 3.
B(x) = 5x^4 - 3x^3 + 5x – 3x^4 – 2x^3 + 9 – 6x
C(x) = x^4 + 4x^2 + 5.
a, Thu gọn và sắp xếp các hạng tử của đa thức A(x) và B(x) theo lũy thừa giảm dần của biến, cho biết bậc, hệ số cao nhất và hệ số tự do của A(x) và B(x).
b, Biết M(x) – A(x) = B(x); N(x) + A(x) = B(x), tính M(x) và N(x).
c, Biết Q(x) = A(x) – B(x), không thực hiện phép tính, hãy cho biết Q(x) bằng bao nhiêu?
d, Chứng minh rằng C(x) không có nghiệm
GIÚP MÌNH VỚI Ạ VÌ MAI MÌNH THI HK2 MÀ VẪN CHƯA HIỂU BÀI :,(
a: \(A\left(x\right)=2x^4-x^3+3x^2+9x-2\)
\(B\left(x\right)=2x^4-5x^3-x+9\)
\(C\left(x\right)=x^4+4x^2+5\)
A(x): bậc 4; hệ số cao nhất là 2; hệ số tự do là -2
B(x): bậc 4; hệ số cao nhất là 4; hệ số tự do là 9
b: M(x)=A(x)+B(x)=4x^4-6x^3+3x^2+8x+7
N(x)=B(x)-A(x)=-4x^3-3x^2-10x+11
c: Q(x)=-N(x)=4x^3+3x^2+10x-11
thu gọn sắp xếp theo lũy thừa giảm dần của biến rồi tìm bậc , tìm hệ số cao nhất , hệ số tự do của mỗi đa thức sau
a, 5x^2 - 7 + 6 x - 8x^3 - x^4 - 2x^2 + 4x^3
b, x^4 + 5 - 8x^3 - 5x^2 +3x^3 - 2x^4
c, -6x^3 + 5 x - 1 + 2x^2 + 6x^3 - 2x +5x^2
d, 5x^4 - 3x^2 + 9 x^3 - 2^4 + 4 + 5x
Lời giải:
Các đa thức sau khi được thu gọn và sáp xếp theo lũy giảm dần:
a) \(-x^4-4x^3+3x^2+6x-7\)
Bậc của đa thức: 4
Hệ số cao nhất : -1
Hệ số tự do : -7
b) \(-x^4-5x^3-5x^2+5\)
Bậc của đa thức: 4
Hệ số cao nhất : -1
Hệ số tự do: 5
c) \(7x^2+3x-1\)
Bậc của đa thức: 2
Hệ số cao nhất: 7
Hệ tự do: -1
d) \(3x^4+9x^3-3x^2+5x+4\)
Bậc của đa thức: 4
Hệ số cao nhất: 3
Hệ số tự do: 4
Bài 5: Cho A(x)= 7x³ + 3x⁴ - x² + 5x² - 6x³ - 2x⁴ - x³ + 2023
a) Thu gọn A(x) và sắp xếp theo lũy thừa giảm của biến
A= 7X³ + 3X⁴ - X² + 5X² - 6X³ - 2X⁴ - X³ + 2023
=> A= ( 3X⁴ - 2X⁴) + ( 7X³ - 6X³ - X³) + ( -X² + 5X²) + 2023
=> A= X⁴ + 3X² + 2023