viết phương trình tiếp tuyến
a) y = -x\(^2\) + 4x + 4 tại điểm có hoành độ bằng -1
b) y = - 4x\(^3\) + 3x\(^2\) + 4 tại điểm có hoành độ bằng 2
c) y = - x\(^4\) +2x\(^2\) + 4 tại điểm có hoành độ bằng \(\sqrt{2}\)
viết phương trình tiếp tuyến
a) y = x\(^2\) - 6x - 3 tại điểm có hoành độ bằng 2
b) y = 2x\(^3\) - 3x\(^2\) - 4x - 3 tại điểm có hoành độ bằng -2
a, \(y'=2x-6\\ y'\left(2\right)=-2\\ y\left(2\right)=-11\)
Phương trình tiếp tuyến tại điểm có hoành độ bằng 2 là \(y=-2\left(x-2\right)-11=-2x-7\)
b, \(y'=6x^2-6x-4\\ y'\left(-2\right)=32\\ y\left(-2\right)=-23\)
Phương trình tiếp tuyến tại điểm có hoành độ bằng -2 là \(y=32\left(x+2\right)-23=32x+41\)
viết phương trình tiếp tuyến
a) y = 2x\(^4\) - 3x\(^2\) - 3 tại điểm có hoành độ bằng -\(\sqrt{2}\)
b) y = \(\dfrac{x+5}{2x-3}\) tại điểm có hoành độ bằng 1
a, \(y'=8x^3-6x\\ y'\left(-\sqrt{2}\right)=-10\sqrt{2}\\ y\left(-\sqrt{2}\right)=-1\)
Phương trình tiếp tuyến tại điểm có hoành độ bằng \(-\sqrt{2}\) là \(y=-10\sqrt{2}\left(x+\sqrt{2}\right)-1=-10\sqrt{2}x-21\)
b, \(y'=-\dfrac{13}{\left(2x-3\right)^2}\\ y'\left(1\right)=-13\\ y\left(1\right)=-6\)
Phương trình tiếp tuyến tại điểm có hoành độ bằng 1 là \(-13\left(x-1\right)-6=-13x+7\)
Viết Phương trình tiếp tuyến
a) y = \(\dfrac{x-4}{2x+1}\) tại điểm có hoành độ bằng -1
b) y = \(\dfrac{2}{x-3}\)tại điểm có hoành độ bằng 2
a: \(y'=\dfrac{\left(x-4\right)'\left(2x+1\right)-\left(x-4\right)\left(2x+1\right)'}{\left(2x+1\right)^2}\)
\(=\dfrac{2x+1-2\left(x-4\right)}{\left(2x+1\right)^2}=\dfrac{9}{\left(2x+1\right)^2}\)
Khi x=-1 thì \(y=\dfrac{-1-4}{-2+1}=\dfrac{-5}{-1}=5\)
Khi x=-1 thì \(y'=\dfrac{9}{\left(-2\cdot1+1\right)^2}=\dfrac{9}{\left(-2+1\right)^2}=9\)
Phương trình tiếp tuyến tại điểm có hoành độ x=-1 là:
y-5=9(x+1)
=>y-5=9x+9
=>y=9x+14
b: \(y'=\dfrac{2'\left(x-3\right)-2\left(x-3\right)'}{\left(x-3\right)^2}=\dfrac{-2}{\left(x-3\right)^2}\)
Khi x=2 thì \(y=\dfrac{2}{2-3}=-1;y'=-\dfrac{-2}{\left(2-3\right)^2}=-2\)
Phương trình tiếp tuyến tại điểm có hoành độ bằng 2 là:
y-(-1)=-2(x-2)
=>y+1=-2x+4
=>y=-2x+3
Bài 1: Viết phương trình đồ thị hàm số
a) \(y=x^3-3x^2+2 \) tại điểm (-1;-2)
b) \(y=\dfrac{x^2+4x+5}{x+2}\) tại điểm có hoành độ bằng 0
Bài 2: Viết phương trình tiếp tuyến với:
a) Đường cong (C): \(y=x^3+x-3\) tại điểm có hoành độ bằng -1
b) Đường cong (C): \(y=x^3-3x^2\) tại điểm có tung độ bằng -4
c) Đường cong (C): \(y=\dfrac{x-3}{2x+1}\) tại điểm có hoành độ bằng -1
Bài 3: Viết phương trình tiếp tuyến với:
a) Đường cong (C): \(y=\dfrac{1}{3}3x^3-2x^2+3x+1\) biết tiếp tuyến song song đường thẳng \(y=\dfrac{-3}{4}x\)
b) Đường cong (C): \(y=\dfrac{x^2+3x+1}{-x-2}\) biết tiếp tuyến song song với đường thẳng 2x+y-5=0
Bài 4: Cho đường cong (C): \(y=\dfrac{x^2-2x+2}{x-1}\). Viết phương trình tiếp tuyến của (C) biết:
a) Tại điểm có hoành độ bằng 6
b) Song song với đường thẳng \(y=-3x+29\)
c) Vuông góc với đường thẳng \(y=\dfrac{1}{3}x+2\)
Bài 5: Cho hàm số \(y=\dfrac{3x-2}{x-1}\) (C). Viết phương trình tiếp tuyến của đồ thị hàm số (C) biết:
a) Tiếp tuyến đi qua A(2;0)
b) Tiếp tuyến tạo với trục hoành 1 góc 45°
Mình làm xong hết rồi nhưng mà không biết đúng hay không. Nhờ mọi người giải giúp mình để mình thử đối chiếu đáp án được không ạ?
Câu 1:Điểm M(0;4) nằm trên:
A. Trục tung tại điểm có tung độ bằng 4
B. Trục hoành tại điểm có hoành độ bằng 4
C. Trục tung tại điểm có tung độ bằng 0
D. Trục hoành tại điểm có hoành độ bằng 0
Câu 2:Cho hàm số y=-4x+1. Với y=-3 ta có x=?
A.1
B.13
C.-11
D.10
Tìm tham số m để:
a) d: y = 2mx + 5 và d': y = 4x +m cắt nhau tại điểm có hoành độ bằng 1.
b) d: y = (3m - 2)x + 4 cắt trục hoành tại điểm có hoành độ bằng 3.
a: Thay x=1 vào y=4x+m, ta được:
y=4*1+m=m+4
Thay x=1 và y=m+4 vào y=2mx+5, ta được:
2m+5=m+4
=>m=-1
b: Thay x=3 và y=0 vào (d), ta được:
3(3m-2)+4=0
=>9m-6+4=0
=>9m-2=0
=>m=2/9
Viết phương trình tiếp tuyến của đồ thị hàm số sau:
a) \(y = {x^3} - 3{x^2} + 4\) tại điểm có hoành độ \({x_0} = 2\)
b) \(y = \ln x\) tại điểm có hoành độ \({x_0} = e\)
c) \(y = {e^x}\) tại điểm có hoành độ \({x_0} = 0\)
a) \(y' = \left( {{x^3} - 3{x^2} + 4} \right)' = 3{x^2} - 6x\), \(y'\left( 2 \right) = {3.2^2} - 6.2 = 0\)
Thay \({x_0} = 2\) vào phương trình \(y = {x^3} - 3{x^2} + 4\) ta được: \(y = {2^3} - {3.2^2} + 4 = 0\)
Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = 0.(x - 2) + 0 = 0\)
Vậy phương trình tiếp tuyến của đồ thị hàm số là y = 0
b) \(y' = \left( {\ln x} \right)' = \frac{1}{x}\), \(y'(e) = \frac{1}{e}\)
Thay \({x_0} = e\) vào phương trình \(y = \ln x\) ta được: \(y = \ln e = 1\)
Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = \frac{1}{e}.\left( {x - e} \right) + 1 = \frac{1}{e}x - 1 + 1 = \frac{1}{e}x\)
Vậy phương trình tiếp tuyến của đồ thị hàm số là: \(y = \frac{1}{e}x\)
c) \(y' = \left( {{e^x}} \right)' = {e^x},\,\,y'(0) = {e^0} = 1\)
Thay \({x_0} = 0\) vào phương trình \(y = {e^x}\) ta được: \(y = {e^0} = 1\)
Ta có phương trình tiếp tuyến của đồ thị hàm số: \(y = 1.\left( {x - 0} \right) + 1 = x + 1\)
Vậy phương trình tiếp tuyến của đồ thị hàm số là: \(y = x + 1\)
Xác định hàm số y= ax+ b biết đồ thị của nó:
a/đi qua điểm A(3;-4) và cắt trục tung tại điểm có tung độ bằng 2
b/cắt trục hoành tại điểm có hoành độ bằng -2 và // với đường thẳng có phương trình y=-4x + 4
c/ đi qua giao điểm của đường thẳng y=3x+6 với trục hoành và tạo với hai trục tọa độ 1 tam giác có diện tích =căn 6
a: Vì (d) đi qua A(3;-4) và (0;2) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}3a+b=-4\\b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\)
b: vì (d)//y=-4x+4 nên a=-4
Vậy:(d): y=-4x+b
Thay x=-2 và y=0 vào (d), ta được:
b+8=0
hay b=-8
Cho hàm số \(y=x^3-3x^2+2x\) có đồ thị (C)
a. Viết phương trình tiếp tuyến (C) tại điểm có hoành độ bằng -1
b. Viết phương trình tiếp tuyến của (C) tại điểm có tung độ bằng 6
c. Viết phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục hoành.
a. Ta có : \(y'=3x^2-6x+2\)
\(x_0=1\Leftrightarrow y_0=-6\) và \(y'\left(x_0\right)=y'\left(-1\right)=11\)
Suy ra phương trình tiếp tuyến là \(y=y'\left(-1\right)\left(x+1\right)-6=11x+5\)
b. Gọi \(M\left(x_0;6\right)\) là tiếp điểm, ta có :
\(x_0^3-3x_0^2+2x_0=6\Leftrightarrow\left(x_0-3\right)\left(x_0^2+2\right)=0\Leftrightarrow x_0=3\)
Vậy phương trình tiếp tuyến là :
\(y=y'\left(3\right)\left(x-3\right)+6=11x-27\)
c. PTHD giao điểm của (C) với Ox :
\(x^3-3x^2+2x=0\Leftrightarrow x=0;x=1;x=2\)
* \(x=0\) ta có tiếp tuyến : \(y=y'\left(0\right)\left(x-0\right)+0=2x\)
* \(x=1\) ta có tiếp tuyến : \(y=y'\left(1\right)\left(x-1\right)+0=-x+1\)
* \(x=2\) ta có tiếp tuyến : \(y=y'\left(2\right)\left(x-2\right)+0=2x-4\)