Phân tích đa thức thành nhân tử a) 64x^2 -24y^2 b)64x^3-27y^3 c)x^4- 2x^3+x^2 d) (x-y) 3+8y^3
Lời giải:
a.
$64x^2-24y^2=8(8x^2-3y^2)=8(\sqrt{8}x-\sqrt{3}y)(\sqrt{8}x+\sqrt{3}y)$
b.
$64x^3-27y^3=(4x)^3-(3y)^3=(4x-3y)(16x^2+12xy+9y^2)$
c.
$x^4-2x^3+x^2=(x^2-x)^2=[x(x-1)]^2=x^2(x-1)^2$
d.
$(x-y)^3+8y^3=(x-y)^3+(2y)^3=(x-y+2y)[(x-y)^2-2y(x-y)+(2y)^2]$
$=(x+y)(x^2-4xy+7y^2)$
a) \(64x^2-24y^2\)
\(=8\left(8x^2-3y^2\right)\)
b) \(64x^3-27y^3\)
\(=\left(4x\right)^3-\left(3y\right)^3\)
\(=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\)
c) \(x^4-2x^3+x^2\)
\(=x^2\left(x^2-2x+1\right)\)
\(=x^2\left(x-1\right)^2\)
d) \(\left(x-y\right)^3+8y^3\)
\(=\left(x-y+2y\right)\left(x^2-2xy+y^2-2xy+2y^2+4y^2\right)\)
\(=\left(x+y\right)\left(x^2-4xy+7y^2\right)\)
1) phân tích đa thức thành nhân tử
a) 4x^4 - 32x^2 + 1
b) x^6 + 27
c) 3(x^4 + x^2 + 1) - (x^2 - x + 1)
d) (2x^2 -4)^2 + 9
2) phân tích đa thức thành nhân tử
a) 4x^4 + 1
b) 64x^4 + y^4
c) x^8 + x^4 + 1
Phân tích đa thức thành nhân tử A)x↑3-3xy↑2-y↑3+y↑2-x↑2 B)6x↑2-24y↑2 C)64x↑3-27y↑3 D)x↑4-2x↑3-x↑2
b: 6x^2-24y^2
=6(x^2-4y^2)
=6(x-2y)(x+2y)
c: =(4x)^3-(3y)^3
=(4x-3y)(16x^2+12xy+9y^2)
d: x^4-2x^3-x^2
=x^2(x^2-2x-1)
Phân tích đa thức thành nhân tử:
\(a,x^4-2x^3+x^2-2x\)
\(b,x^4+x^3-8x-8\)
a: \(x^4-2x^3+x^2-2x\)
\(=\left(x^4-2x^3\right)+\left(x^2-2x\right)\)
\(=x^3\left(x-2\right)+x\left(x-2\right)\)
\(=x\left(x-2\right)\left(x^2+1\right)\)
b: \(x^4+x^3-8x-8\)
\(=\left(x^4+x^3\right)-\left(8x+8\right)\)
\(=x^3\left(x+1\right)-8\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3-8\right)\)
\(=\left(x+1\right)\left(x-2\right)\left(x^2+2x+4\right)\)
Phân tích đa thức thành nhân tử bằng phương pháp đặt biến phụ.
a. (x + 1)(x + 2)(x + 4)(x + 5) – 4
b. (2x + 1)^4– 3(2x + 1)^2 + 2
c.x^4 + 2x^2– 3
d.x(x + 1)(x + 2)(x + 3) – 24
giúp mình với ạ, mình đang cần gấp T^T
a) \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)-4=\left(x^2+6x+5\right)\left(x^2+6x+8\right)-4\)
Đặt \(t=x^2+6x+5\)
\(PT=t\left(t+3\right)-4=t^2+3t-4=\left(t-1\right)\left(t+4\right)\)
Thay t: \(PT=\left(x^2+6x+5-1\right)\left(x^2+6x+5+4\right)=\left(x^2+6x+4\right)\left(x^2+6x+9\right)=\left(x^2+6x+4\right)\left(x+3\right)^2\)
b) Đặt \(t=\left(2x+1\right)^2\)
\(PT=t^2-3t+2=\left(t^2-3t+\dfrac{9}{4}\right)-\dfrac{1}{4}=\left(t+\dfrac{3}{2}\right)^2-\dfrac{1}{4}=\left(t+1\right)\left(t+2\right)\)
Thay t:
\(PT=\left[\left(2x+1\right)^2+1\right]\left[\left(2x+1\right)^2+2\right]=\left[4x^2+4x+2\right]\left[4x^2+4x+3\right]=2\left[2x^2+2x+1\right]\left[4x^2+4x+3\right]\)
phân tích đa thức thành nhân tử
a) 4x (a-b) +6xy(b-a)
b) (6x+3) - ( 2x-5) (2x+1)
c) 4 ( x-3)^2 +2x (3-x)
d) x^4 +2x^2 -4x-4
e) 2x (x+y) -x -y
g)( 3x-1 )^2 - (x+3)^2
a) \(4x\left(a-b\right)+6xy\left(b-a\right)\)
\(=4x\left(a-b\right)-6xy\left(a-b\right)\)
\(=\left(4x-6xy\right)\left(a-b\right)\)
\(=2x\left(2-3y\right)\left(a-b\right)\)
b) \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=3\left(2x+1\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(3-2x+5\right)\left(2x+1\right)\)
\(=\left(8-2x\right)\left(2x+1\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
g: \(\left(3x-1\right)^2-\left(x+3\right)^2\)
\(=\left(3x-1-x-3\right)\left(3x-1+x+3\right)\)
\(=\left(2x-4\right)\left(4x+2\right)\)
\(=4\left(x-2\right)\left(2x+1\right)\)
2x^3+16y^3
\(\left(2x+1\right)^2-2\left(2x+1\right)\left(3-x\right)+\left(x-3\right)^2\)
\(=\left(2x+1\right)^2+2\left(2x-1\right)\left(x-3\right)+\left(x-3\right)^2\)
\(=\left(2x+1+x-3\right)^2\)
\(=\left(3x-2\right)^2\)
------------------------------------
\(a^3+3a^2-6a-8\)
\(=a^3+4a^2-a^2-4a-2a-8\)
\(=\left(a^3+4a^2\right)-\left(a^2+4a\right)-\left(2a+8\right)\)
\(=a^2\left(a+4\right)-a\left(a+4\right)-2\left(a+4\right)\)
\(=\left(a+4\right)\left(a^2-a-2\right)\)
\(=\left(a+4\right)\left(a^2-2a+a-2\right)\)
\(=\left(a+4\right)\left[\left(a^2-2a\right)+\left(a-2\right)\right]\)
\(=\left(a+4\right)\left[a\left(a-2\right)+\left(a-2\right)\right]\)
\(=\left(a+4\right)\left(a-2\right)\left(a+1\right)\)
---------------------------------
\(2x^2-5x+2\)
\(=2x^2-4x-x+2\)
\(=\left(2x^2-4x\right)-\left(x-2\right)\)
\(=2x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(2x-1\right)\)
-----------------------------------------
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x-4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y-2\right)\)
-------------------------------------
\(a^2-1+4b-4b^2\)
\(=a^2-\left(1-4b+4b^2\right)\)
\(=a^2-\left(1-2b\right)^2\)
\(=\left(a-1+2b\right)\left(a+1-2b\right)\)
----------------------------------------
\(a^4+6a^2b+9b^2-1\)
\(=\left(a^4+6a^2b+9b^2\right)-1\)
\(=\left(a^2+3b\right)^2-1\)
\(=\left(a^2+3b-1\right)\left(a^2+3b+1\right)\)
---------------------------------
\(2x^3+16y^3\)
\(=2\left(x^3+8y^3\right)\)
\(=2\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
Lần sau ghi đề tách riêng từng câu ra nhé em. Ghi dính chùm vậy khó nhìn lắm. Sẽ ít ai giải cho em
Phân tích các đa thức sau thành nhân tử:
1, 2(x-1)3-(x-1)
2, y(x-2y)2+xy2(2y-x)
3, xy(x+y)-2x-y
4, xy(x-3y)-2x+6y
1) \(2\left(x-1\right)^3-\left(x-1\right)=\left(x-1\right)\left(2\left(x-1\right)^2-1\right)\)
2) \(y\left(x-2y\right)^2+xy^2\left(2y-x\right)=\left(2y-x\right)\left(2\left(2y-x\right)+1\right)=\left(2y-x\right)\left(4y-2x+1\right)\)
3) \(xy\left(x+y\right)-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\) (xem lại đề sửa -2x thành -x mới đúng)
4) \(xy\left(x-3y\right)-2x+6y=xy\left(x-3y\right)-2\left(x-3y\right)=\left(x-3y\right)\left(xy-2\right)\)
giải hộ mình bài phân tích đa thức thành nhân tử theo cách thêm bớt hạng tử này vs:
a, x^3 + x^2 +4
b, a^4 + 4b^4
c, x^3 - 2x -4
d, x^4 + 2x^2 -24