tìm GTNN của biểu thức sau:A=4x^2-4x+y^2+4y+20
Bài 1: Tìm GTNN của biểu thức sau:
a) A= 2x2 + x
b) B = x2 + 2x + y2- 4y + 6
c) C = 4x2 + 4x + 9y2 - 6y - 5
d) D = (2 + x)( x + 4) - ( x - 1)( x + 3 )2
b) Ta có: \(B=x^2+2x+y^2-4y+6\)
\(=x^2+2x+1+y^2-4y+4+1\)
\(=\left(x+1\right)^2+\left(y-2\right)^2+1\ge1\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)
Vậy: \(B_{min}=1\) khi (x,y)=(-1;2)
c) Ta có: \(C=4x^2+4x+9y^2-6y-5\)
\(=4x^2+4x+1+9y^2-6y+1-7\)
\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(C_{min}=-7\) khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)
\(A=2x^2+x=2\left(x^2+\dfrac{1}{2}x\right)=2\left(x^2+2.\dfrac{1}{4}x+\dfrac{1}{16}-\dfrac{1}{16}\right)\)
\(=2\left[\left(x+\dfrac{1}{4}\right)^2-\dfrac{1}{16}\right]\ge-\dfrac{1}{8}\) dấu"=' xảy ra<=>x=\(-\dfrac{1}{4}\)
\(B=x^2+2x+y^2-4y+6\)
\(=x^2+2x+1+y^2-4y+4+1=\left(x+1\right)^2+\left(y-2\right)^2+1\)
\(\ge1\) dấu"=" xảy ra<=>x=-1;y=2
\(C=4x^2+4x+9y^2-6y-5\)
\(=4x^2+4x+1+9y^2-6y+1-7\)
\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\)
dấu"=" xảy ra<=>x=\(-\dfrac{1}{2},y=\dfrac{1}{3}\)
\(D=\left(2+x\right)\left(x+4\right)-\left(x-1\right)\left(x+3\right)^2\)
=\(x^2+6x+8-\left(x-1\right)\left(x+3\right)^2\)
\(=\left(x+3\right)^2-1-\left(x-1\right)\left(x+3\right)^2\)
\(=\left(x+3\right)^2\left(2-x\right)-1\ge-1\)
dấu"=" xảy ra\(< =>\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Tìm GTNN của các biểu thức sau:
a) M = x2 - 4x + 5
b) N = y2 - y - 3
c) P = x2 + y2 - 4x +y + 7
\(a,M=x^2-4x+5=\left(x-2\right)^2+5\\ \Rightarrow M\ge5\)
Dấu "=" xảy ra \(\Leftrightarrow x=2\)
\(b,N=y^2-y-3=\left(y-\dfrac{1}{2}\right)^2-\dfrac{13}{4}\\ \Rightarrow N\ge-\dfrac{13}{4} \)
Dấu "=" xảy ra \(\Leftrightarrow y=\dfrac{1}{2}\)
\(P=x^2+y^2-4x+y+7=\left(x-2\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\\ \Rightarrow P\ge\dfrac{11}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\dfrac{1}{2}\end{matrix}\right.\)
a: M=x^2-4x+4+1
=(x-2)^2+1>=1
Dấu = xảy ra khi x=2
b: N=y^2-y+1/4-13/4
=(y-1/2)^2-13/4>=-13/4
Dấu = xảy ra khi y=1/2
c: P=x^2-4x+4+y^2+y+1/4+11/4
=(x-2)^2+(y+1/2)^2+11/4>=11/4
Dấu = xảy ra khi x=2 và y=-1/2
Tìm GTNN của biểu thức: P =x^2 + 4y^2 - 4x + 4y + 2021
\(P=x^2+4y^2-4x+4y+2021\)
\(=\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+2016\)
\(=\left(x-2\right)^2+\left(2y+1\right)^2+2016\ge2016\)
\(P_{min}=2016\Leftrightarrow x=2;y=-\dfrac{1}{2}\)
Tìm GTNN, GTLN của biểu thức sau:
A=\(\dfrac{4x+3}{x^2+1}\)
\(A=\dfrac{4x+3}{x^2+1}\Leftrightarrow Ax^2+A=4x+3\\ \Leftrightarrow Ax^2-4x+A-3=0\)
Coi đây là PT bậc 2 ẩn x thì PT có nghiệm
\(\Leftrightarrow\Delta=16-4A\left(A-3\right)\ge0\\ \Leftrightarrow16-4A^2+12A\ge0\\ \Leftrightarrow-A^2+3A+4\ge0\\ \Leftrightarrow-1\le A\le4\)
Vậy \(A_{max}=4;A_{min}=-1\)
\(A_{max}=4\Leftrightarrow\dfrac{4x+3}{x^2+1}=4\Leftrightarrow4x^2-4x+1=0\\ \Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\\ A_{min}=-1\Leftrightarrow\dfrac{4x+3}{x^2+1}=-1\Leftrightarrow x^2+1=-4x-3\Leftrightarrow x^2+4x+4=0\\ \Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x=-2\)
Tìm mối liên hệ của x, y để biểu thức sau đạt GTNN. Tìm GTNN đó
P = x2 + 2xy + 4x + 4y + y2 + 5
\(P=x^2+2xy+4x+4y+y^2+5\)
\(=\left(x^2+2xy+y^2\right)+4\left(x+y\right)+5\)
\(=\left(x+y\right)^2+4\left(x+y\right)+4+1\)
\(=\left(x+y+2\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow x+y+2=0\)
Vậy với x + y + 2 = 0 thì Pmin = 1
p = x.x + 2.x.y+ 4.x+4.y+ y.2+5
=> P= x.(x+2+y+4)+y.(4+2) +5
mà giá trị nhỏ nhất là gì ạ?
\(P=\left(x^2+2xy+y^2\right)+\left(4x+4y\right)+5\)
\(=\left(x+y\right)^2+4\left(x+y\right)+5\)\(\ge0+0+5=5\)
Dấu "=" xảy ra \(\Leftrightarrow x+y=0\Leftrightarrow\orbr{\begin{cases}x=-y\\y=\left(-x\right)\end{cases}}\)
Tìm GTNN của biểu thức
A=2x^2+y^2-4x+4y+5
\(A=2x^2+y^2-4x+4y+5\)
\(=\left(2x^2-4x+2\right)+\left(y^2+4y+4\right)-1\)
\(=2\left(x-1\right)^2+\left(y+2\right)^2-1\ge-1\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
Vậy \(A_{min}=-1\) khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
^^
A = 2x2 + 2y2 - 4x + 4y + 5
A = (x2 + y2) + (x2 - 4x + 4) + (y2 + 4y + 4) - 3
A = (x2 + y2) + (x - 2)2 + (y + 2)2 - 3 ≥ -3 (vì (x2 + y2) ≥ 0; (x - 2)2 ≥ 0; (y + 2)2 ≥ 0)
GTNN của biểu thức là A = 3
với x2 + y2 = 0 => x = y = 0
(x - 2)2 = 0 => x = 2
(y + 2)2 = 0 => y = -2
vậy không có giá trị nào thỏa mãn A = 3
Tìm GTNN của biểu thức
\(\sqrt{x^2+y^2-4x+4y+8}+\sqrt{4x^2+2y^2-4x+8y+9}\)
Bài 5: Tìm GTNN của các biểu thức sau:
a) A = x^2 – 4x + 9
b) B = x^2 – x + 1
c) C = 2x^2 – 6x
Bài 4: Tìm GTLN của các đa thức:
a) M = 4x – x^2 + 3
b) N = x – x^2
c) P = 2x – 2x^2 – 5
Bài 5:
a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)
\(minA=5\Leftrightarrow x=2\)
b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)
Bài 4:
a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
\(maxM=7\Leftrightarrow x=2\)
b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)
\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)
CHO MÌNH HỎI
1) Tìm GTLN của A= giá trị tuyệt đối x+2 - \(\frac{51}{2}\)
2) Tìm GTNN của: 2x2+4x+4+y2-4y
3) Tìm GTNN của biểu thức: x2-4x+13 đạt được x=?