Tính giá trị biểu thức:
A= x50-2023x49+2023x48-...+2023x2-2023x+2024 tại x = 2022
\(x^5-2023x^4-2023x^3-2023x^2-2023x-2010\)
tính giá trị biểu thức 1 cách hợp lí khi x =2024
ta có biểu thức:
x⁵ − 2023x⁴ − 2023x³ − 2023x² − 2023x − 2010
thay x = 2024.
cách tính hợp lí: đặt 2024 = 2023 + 1
gọi a = 2023
-> x = a + 1
thay vào:
p(x) = (a + 1)⁵ − a(a + 1)⁴ − a(a + 1)³ − a(a + 1)² − a(a + 1) − 2010
thay a = 2023, ta được kết quả là 14
vậy p(2024) = 14
Khi x=2024 nên x-1=2023
\(x^5-2023x^4-2023x^3-2023x^2-2023x-2010\)
\(=x^5-x^4\left(x-1\right)-x^3\left(x-1\right)-x^2\left(x-1\right)-x\left(x-1\right)-2010\)
\(=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-2010\)
=x-2010
=2024-2010
=14
tìm giá trị lớn nhất của P = \(\dfrac{|x-2022|-|x-2023|+|x-2024|+2022}{|x-2022|+|x-2023|+|x-2024|}\)
Đặt A=|x-2022|+|x-2023|+|x-2024|
TH1: x<2022
=>x-2022<0; x-2023<0; x-2024<0
=>A=-x+2022-x+2023-x+2024=-3x+6069
Vì hàm số A=-3x+6069 là hàm số nghịch biến trên R
nên A nhỏ nhất khi x lớn nhất
Khi x<2022 thì x không có giá trị lớn nhất
=>A không có giá trị nhỏ nhất(1)
TH2: 2022<=x<2023
=>x-2022>=0; x-2023<0; x-2024<0
=>A=x-2022+2023-x+2024-x=-x+2025
Vì hàm số A=-x+2025 là hàm số nghịch biến trên R
nên A nhỏ nhất khi x lớn nhất
Khi 2022<=x<2023 thì x không có giá trị lớn nhất
=>A không có giá trị nhỏ nhất(2)
TH3: 2023<=x<2024
=>x-2022>0; x-2023>=0; x-2024<0
=>A=x-2022+x-2023+2024-x=x-2021
Vì hàm số A=x-2021 là hàm số đồng biến trên R
nên A nhỏ nhất khi x nhỏ nhất
Khi 2023<=x<2024 thì \(x_{\min}=2023\)
=>A min=2023-2021=2(3)
TH4: x>=2024
=>x-2022>0; x-2023>0; x-2024>=0
=>A=x-2022+x-2023+x-2024=3x-6069
Vì hàm số A=3x-6069 là hàm số đồng biến trên R
nên A nhỏ nhất khi x nhỏ nhất
Khi x>=2024 thì \(x_{\min}=2024\)
=>\(A_{\min}=3\cdot2024-6069=6072-6069=3\) (4)
Từ (1),(2),(3),(4) suy ra \(A_{\min}=3\) khi x=2023
Ta có: \(P=\frac{|x-2022|+|x-2023|+|x-2024|+2022}{|x-2022|+|x-2023|+|x-2024|}\)
\(=1+\frac{2022}{|x-2022|+|x-2023|+|x-2024|}=1+\frac{2022}{A}\)
\(A\ge3\forall x\)
=>\(\frac{2022}{A}\le\frac{2022}{3}=674\forall x\)
=>\(1+\frac{2022}{A}\le1+674=675\forall x\)
=>P<=675∀x
Dấu '=' xảy ra khi x=2023
Tính giá trị biểu thức:
A= 1-2-3+4+5-6-7+...+2021-2022-2023
=(1-2-3+4)+(5-6-7+8)+...+(2017-2018-2019+2020)+2021-2022-2023
=0+0+...+0-1-2023
=-2024
tìm giá trị lớn nhất của biểu thức A=|2020-x|+|2022-x|+|2024-x|
cho x,y,z thỏa mãn điều kiện x/y=y/z=z/x. tính giá trị biểu thức P=(x-y)mũ 2022+(y-z)mũ 2023+(x-z-1)mũ 2024
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{y+z+x}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
Do đó \(\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
Thay vào biểu thức \(P=\left(x-y\right)^{2022}+\left(y-z\right)^{2023}+\left(x-z-1\right)^{202}\),ta có:
\(P=0^{2022}+0^{2023}+\left(-1\right)^{202}\)
\(=0+0+1\)
\(=1\)
Cho biết các số x,y,z thỏa mãn :
x2+2y+1=0
y2+2z+1=0
z2+2x+1=0
Tính giá trị biểu thức:
a) A = x2020 + y2020+z2020
b) B=\(\dfrac{1}{x^{2022}}+\dfrac{1}{y^{2022}}+\dfrac{1}{z^{2022}}\)
Ta có: \(\left\{{}\begin{matrix}x^2+2y+1=0\\y^2+2z+1=0\\z^2+2x+1=0\end{matrix}\right.\)
\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)
\(\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)
\(\Rightarrow x=y=z=-1\)(do \(\left(x+1\right)^2,\left(y+1\right)^2,\left(z+1\right)^2\ge0\forall x,y,z\))
a) \(A=x^{2020}+y^{2020}+z^{2020}=\left(-1\right)^{2020}+\left(-1\right)^{2020}+\left(-1\right)^{2020}=1+1+1=3\)
b) \(B=\dfrac{1}{x^{2020}}+\dfrac{1}{y^{2020}}+\dfrac{1}{z^{2020}}=\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}=\dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{1}=3\)
`a, A = 3020 xx 3110 - 5 = 3020 xx 3109 + 3020 - 5`
`= 3020 xx 3109 + 3015 = B`.
`b, B = (2022-2)(2022+2) = 2022^2-4 < 2022^2 = A.`
Tìm giá trị nhỏ nhất của biểu thức: A=\(_{\frac{2024}{4 - 2022 x - 1}}\)
Bài 6
Ạ)Cho a2 +4b2+9c2=2ab+6bc+3ca. Tính giá trị của biểu thức
A=(a-2b+1)2022+(2b-3c-1)2023+(3c-a+1)2024
B) cho x,y thỏa mãn x2+2xy+6x+6y+2y2+8=0 tìm giá trị lớn nhất và nhỏ nhất của biểu thức A= x+y+2024
a: \(a^2+4b^2+9c^2=2ab+6bc+3ac\)
=>\(2a^2+8b^2+18c^2-4ab-12bc-6ac=0\)
=>\(a^2-4ab+4b^2+4b^2-12bc+9c_{}^2+a^2-6ac+9c^2=0\)
=>\(\left(a-2b\right)^2+\left(2b-3c\right)^2+\left(a-3c\right)^2=0\)
=>\(\begin{cases}a-2b=0\\ 2b-3c=0\\ 3c-a=0\end{cases}\Rightarrow a=2b=3c\)
\(A=\left(a-2b+1\right)^{2022}+\left(2b-3c-1\right)^{2023}+\left(3c-a+1\right)^{2024}\)
\(=\left(a-a+1\right)^{2022}+\left(2b-2b-1\right)^{2023}+\left(a-a+1\right)^{2024}\)
=1-1+1
=1
b: \(x^2+2xy+6x+6y+2y^2+8=0\)
=>\(x^2+2xy+y^2+6\left(x+y\right)+9+y^2-1=0\)
=>\(\left(x+y+3\right)^2-1=-y^2\)
=>\(-y^2=\left(x+y+2\right)\left(x+y+4\right)\)
=>\(-y^2=\left(x+y+2024-2022\right)\left(x+y+2024-2020\right)\)
=>\(-y^2=\left(A-2022\right)\left(A-2020\right)\)
mà \(-y^2\le0\forall y\)
nên (A-2022)(A-2020)<=0
=>2020<=A<=2022
\(A_{\min}=2020\) khi x+y+2=0 và y=0
=>y=0 và x=-2-y=-2-0=-2
\(A\max=2022\) khi x+y+4=0 và y=0
=>y=0 và x=-y-4=-4