Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Anh Hoàng
Xem chi tiết
Nguyễn Thu Huệ
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 7 2020 lúc 11:51

Bài 1:

a) Ta có: \(\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)

\(=4x^2-4x+1+4\left(x^2+2x-3\right)-2\left(25-30x+9x^2\right)\)

\(=4x^2-4x+1+4x^2+8x-12-50+60x-18x^2\)

\(=-10x^2+64x-61\)

b) Ta có: \(\left(2a^2+2a+1\right)\left(2a^2-2a+1\right)-\left(2a^2+1\right)^2\)

\(=\left(2a^2+1\right)^2-\left(2a\right)^2-\left(2a^2+1\right)^2\)

\(=-4a^2\)

c) Ta có: \(\left(9x-1\right)^2+\left(1-5x\right)^2+2\left(9x-1\right)\left(1-5x\right)\)

\(=\left(9x-1+1-5x\right)^2\)

\(=\left(4x\right)^2=16x^2\)

d)

Sửa đề: \(\left(x^2+5x-1\right)^2+2\left(5x-1\right)\left(x^2+5x-1\right)+\left(5x-1\right)^2\)

Ta có: \(\left(x^2+5x-1\right)^2+2\left(5x-1\right)\left(x^2+5x-1\right)+\left(5x-1\right)^2\)

\(=\left(x^2+5x-1+5x-1\right)^2\)

\(=\left(x^2+10x-2\right)^2\)

\(=x^4+100x^2+4+20x^3-40x-4x^2\)

\(=x^4+20x^3+96x^2-40x+4\)

e) Ta có: \(x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)

\(=x\left(x^2-1\right)-\left(x^3+1\right)\)

\(=x^3-x-x^3-1\)

=-x-1

f) Ta có: \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)

\(=x\left(x^2-16\right)-\left(x^4-1\right)\)

\(=x^3-16x-x^4+1\)

Hồ Hoàng Anh Toàn
Xem chi tiết
Nguyễn Hải Dương
2 tháng 7 2018 lúc 20:23

a) (2a2+2a+1).(2a2-2a+1)-(2a2+1)2

Áp dụng hằng đẳng thức A2- B2= (A+B)(A-B)

ta có : (2a2+1)2 - (2a)2 - (2a2+1)2

= 4a2

Chanhh
Xem chi tiết
Lấp La Lấp Lánh
24 tháng 8 2021 lúc 16:16

Bài 2:

a) \(\left(x+5\right)^2=x^2+10x+25\)

b) \(\left(\dfrac{5}{2}-t\right)^2=\dfrac{25}{4}-5t+t^2\)

c) \(\left(2u+3v\right)^2=4u^2+12uv+9v^2\)

d) \(\left(-\dfrac{1}{8}a+\dfrac{2}{3}bc\right)^2=\dfrac{1}{64}a^2-\dfrac{1}{6}abc+\dfrac{4}{9}b^2c^2\)

e) \(\left(\dfrac{x}{y}-\dfrac{1}{z}\right)^2=\dfrac{x^2}{y^2}-\dfrac{2x}{yz}+\dfrac{1}{z^2}\)

f) \(\left(\dfrac{mn}{4}-\dfrac{x}{6}\right)\left(\dfrac{mn}{4}+\dfrac{x}{6}\right)=\dfrac{m^2n^2}{16}-\dfrac{x^2}{36}\)

Akai Haruma
24 tháng 8 2021 lúc 16:23

Bài 1:

$M=(2a+b)^2-(b-2a)^2=[(2a+b)-(b-2a)][(2a+b)+(b-2a)]$

$=4a.2b=8ab$

$N=(3a+1)^2+2a(1-2b)+(2b-1)^2$

$=(9a^2+6a+1)+2a-4ab+(4b^2-4b+1)$
$=9a^2+8a+4b^2-4b-4ab+2$

$A=(m-n)^2+4mn=m^2-2mn+n^2+4mn$

$=m^2+2mn+n^2=(m+n)^2$

Nguyễn Lê Phước Thịnh
25 tháng 8 2021 lúc 1:00

Bài 1: 

a: Ta có: \(M=\left(2a+b\right)^2-\left(b-2a\right)^2\)

\(=4a^2+4ab+b^2-b^2+4ab-4a^2\)

\(=8ab\)

b: Ta có: \(N=\left(3a+2\right)^2+2a\left(1-2b\right)+\left(2b-1\right)^2\)

\(=\left(3a+2+1-2b\right)^2\)

\(=\left(3a-2b+3\right)^2\)

\(=9a^2+4b^2+9-12ab+18a-12b\)

c: Ta có: \(A=\left(m-n\right)^2+4nm\)

\(=m^2-2mn+n^2+4mn\)

\(=m^2+2mn+n^2\)

\(=\left(m+n\right)^2\)

2: 

a: \(\left(x+5\right)^2=x^2+10x+25\)

b: \(\left(\dfrac{5}{2}-t\right)^2=\dfrac{25}{4}-5t+t^2\)

 

Nguyễn Bảo Ngọc
Xem chi tiết
Nguyễn Bảo Ngọc
Xem chi tiết
Fan EBXTOS
24 tháng 7 2018 lúc 14:57

c,4x2-20x+25-4x2-20x-25+40x-1

=-1

Bùi Hoài Nam
Xem chi tiết
NoName.155774
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 9 2021 lúc 22:30

1:

a: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2zx+2yz\)

b: \(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy+2xz-2yz\)

c: \(\left(x-y-z\right)^2=x^2+y^2+z^2-2xy-2xz+2yz\)

Kirito-Kun
2 tháng 9 2021 lúc 7:19

Bài 2: tất cả đều ở dạng tích rồi mà

Anh Clodsomnia
Xem chi tiết
Nguyen Anh Duc
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 6 2023 lúc 22:18

1: =(8+a^3)(8-a^3)=64-a^6

2: =x^3-6x^2+12x-8-x(x^2-1)+6x^2-18x

=x^3-6x-8-x^3+x

=-5x-8

3: =x^3+3x^2+3x+1-x^3+1-3x^2-3x

=2