Giải pt: `(\sqrt(2-\sqrt2))^x+(\sqrt(2-\sqrt2))^x=2^x`
Thầy lâm cíu ....
\(\frac{x\sqrt2}{2\sqrt{x}+x\sqrt{x}}+\frac{\sqrt2-2}{x-2}\)
giải hộ mình với
tính giá trị của các biểu thức sau
\(a)\sqrt{6-4\sqrt2}+\sqrt{22-12\sqrt2}\)
\(b)\sqrt{\left(\sqrt3-\sqrt2\right)^2+}\sqrt2\)
\(c)3\sqrt5-\sqrt{\left(1-\sqrt5_{}\right)^2}\)
\(d)\sqrt{17-12\sqrt2}+\sqrt{2+4\sqrt2}\)
a: \(\sqrt{6-4\sqrt2}+\sqrt{22-12\sqrt2}\)
\(=\sqrt{4-2\cdot2\cdot\sqrt2+2}+\sqrt{18-2\cdot3\sqrt2\cdot2+4}\)
\(=\sqrt{\left(2-\sqrt2\right)^2}+\sqrt{\left(3\sqrt2-2\right)^2}\)
\(=2-\sqrt2+3\sqrt2-2=2\sqrt2\)
b: \(\sqrt{\left(\sqrt3-\sqrt2\right)^2}+\sqrt2=\sqrt3-\sqrt2+\sqrt2=\sqrt3\)
c: \(3\sqrt5-\sqrt{\left(1-\sqrt5\right)^2}\)
\(=3\sqrt5-\left|1-\sqrt5\right|\)
\(=3\sqrt5-\left(\sqrt5-1\right)=2\sqrt5+1\)
d:Sửa đề: \(\sqrt{17-12\sqrt2}+\sqrt{6+4\sqrt2}\)
\(=\sqrt{9-2\cdot3\cdot2\sqrt2+8}+\sqrt{4+2\cdot2\cdot\sqrt2+2}\)
\(=\sqrt{\left(3-2\sqrt2\right)^2}+\sqrt{\left(2+\sqrt2\right)^2}=3-2\sqrt2+2+\sqrt2=5-\sqrt2\)
Cho biểu thức $A = \dfrac{\sqrt x + 2}{\sqrt x + 3} - \dfrac5{x + \sqrt x - 6} - \dfrac1{\sqrt x-2}$ với $x\ge 0$ và $x \ne 4$.
1. Rút gọn biểu thức $A$.
2. Tính giá trị của $A$ khi $x = 6+4\sqrt2$.
a, Với \(x\ge0,x\ne4\)
\(A=\frac{\sqrt{x}+2}{\sqrt{x}+3}-\frac{5}{x+\sqrt{x}-6}-\frac{1}{\sqrt{x}-2}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-5-\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{x-4-5-\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x-\sqrt{x}-12}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}-4}{\sqrt{x}-2}\)
b, Ta có \(x=6+4\sqrt{2}=2^2+4\sqrt{2}+\left(\sqrt{2}\right)^2=\left(2+\sqrt{2}\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{\left(2+\sqrt{2}\right)^2}=\left|2+\sqrt{2}\right|=2+\sqrt{2}\)do \(2+\sqrt{2}>0\)
\(\Rightarrow A=\frac{2+\sqrt{2}-4}{2+\sqrt{2}-2}=\frac{-2+\sqrt{2}}{\sqrt{2}}=\frac{-2\sqrt{2}+2}{2}=\frac{-2\left(\sqrt{2}-1\right)}{2}=1-\sqrt{2}\)
1, A = \(\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\)
2 , A = \(1-\sqrt{2}\)
Giải phương trình:
`x(3-\sqrt{3x-1})=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1`
Chú Lâm cíu cháu :<
ĐKXĐ: ...
\(\Leftrightarrow3x-1-x\sqrt{3x-1}+x\sqrt{x+1}-\sqrt{\left(x+1\right)\left(3x-1\right)}=0\)
\(\Leftrightarrow\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)-\sqrt{x+1}\left(\sqrt{3x-1}-x\right)=0\)
\(\Leftrightarrow\left(\sqrt{3x-1}-\sqrt{x+1}\right)\left(\sqrt{3x-1}-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x-1}=\sqrt{x+1}\\\sqrt{3x-1}=x\end{matrix}\right.\)
\(\Leftrightarrow...\)
ĐKXĐ: x \(\ge\)\(\dfrac{1}{3}\)
pt\(\Leftrightarrow\)x(\(\sqrt{x+1}-\sqrt{3x-1}\))+\(\sqrt{3x-1}\left(\sqrt{3x-1}-\sqrt{x+1}\right)\)=0
\(\Leftrightarrow\)(\(\sqrt{x+1}-\sqrt{3x-1}\))(1-\(\sqrt{3x-1}\))=0
\(\Leftrightarrow\)\(\left[{}\begin{matrix}\sqrt{x+1}=\sqrt{3x-1}\\1=\sqrt{3x-1}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{2}{3}\end{matrix}\right.\)(t/m x \(\ge\)\(\dfrac{1}{3}\))
Vậy.....................
\(x\left(3-\sqrt{3x-1}\right)=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)(Đk x≥\(\dfrac{1}{3}\))
ta có:\(x\left(3-\sqrt{3x-1}\right)\)
=\(3x-x\sqrt{3x-1}\)
=\(3x-1-x\sqrt{3x-1}+1\)
=\(\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)+1\)
Ta có \(\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)
=\(\sqrt{x^2+2x+1-2+2x^2}-x\sqrt{x+1}+1\)
=\(\sqrt{\left(x+1\right)\left(3x-1\right)}-x\sqrt{x+1}+1\)
=\(\sqrt{x+1}\left(\sqrt{3x-1}-x\right)+1\)
ta có \(x\left(3-\sqrt{3x-1}\right)=\sqrt{3x^2+2x-1}-x\sqrt{x+1}+1\)
⇔\(\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)+1\)=\(\sqrt{x+1}\left(\sqrt{3x-1}-x\right)+1\)
⇔\(\sqrt{3x-1}\left(\sqrt{3x-1}-x\right)=\sqrt{x+1}\left(\sqrt{3x-1}-x\right)\)
⇔\(\sqrt{3x-1}=\sqrt{x+1}\)
⇔\(3x-1=x+1\)
⇔\(2x=2\)
⇔x=1(N)
Vậy x=1
Tính nhanh giá trị biểu thức:
\(\frac{1}{1+\sqrt2}+\frac{1}{\sqrt2+\sqrt3}+\cdots+\frac{1}{\sqrt{99}+\sqrt{100}}\)
giải chi tiết giúp em nha
Ta có: \(\frac{1}{1+\sqrt2}+\frac{1}{\sqrt2+\sqrt3}+\cdots+\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\frac{-1+\sqrt2}{\left(\sqrt2+1\right)\left(\sqrt2-1\right)}+\frac{-\sqrt2+\sqrt3}{\left(\sqrt3-\sqrt2\right)\left(\sqrt3+\sqrt2\right)}+\cdots+\frac{-\sqrt{99}+\sqrt{100}}{\left(\sqrt{100}+\sqrt{99}\right)\left(\sqrt{100}-\sqrt{99}\right)}\)
\(=-1+\sqrt2-\sqrt2+\sqrt3-\cdots-\sqrt{99}+\sqrt{100}\)
\(=-1+\sqrt{100}\)
=-1+10
=9
\((2\sqrt5 . \sqrt2 - 3 \sqrt{40} + \sqrt{90} :3) :\sqrt{640}\)
1. Giải phương trình $\sqrt2.\sqrt{2x^2 + x + 1} - \sqrt{4x-1} + 2x^2+3x-3 = 0$.
2. Cho các số thực dương $a, b, c$ thỏa mãn $ab+bc+ca = 3.$ Chứng minh
$\dfrac{a^3}{b+2c} + \dfrac{b^3}{c+2a} + \dfrac{c^3}{a+2b} \ge 1.$
b, \(\frac{a^3}{b+2c}+\frac{b^3}{c+2a}+\frac{c^3}{a+2b}\ge1\)
\(\frac{a^4}{ab+2ac}+\frac{b^4}{bc+2ab}+\frac{c^4}{ac+2bc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ac+2ac+2ab+2bc}\)( Bunhia dạng phân thức )
mà \(a^2+b^2+c^2\ge ab+bc+ac\)
\(=\frac{\left(ab+bc+ac\right)^2}{3+2\left(ab+ac+bc\right)}=\frac{9}{3+6}=1\)( đpcm )
1.
Điều kiện .
Phương trình tương đương với \\
Với ta có:
.
Suy ra .
Vậy phương trình có nghiệm duy nhất
2.
Đặt
Áp dụng bất đẳng thức Cauchy cho hai số dương và ta có
.
Tương tự , .
Cộng các vế ta có .
Mà nên (ta có đpcm).
1.
√2 × √(2x2+x+1) + √(4x-1) + 3x-3=0
⇌[√(4x2+2x+2)-2] - [√(4x-1) -1] + (2x2+3x-2)=0
⇌(4x2+2x-2)/[√(4x2+2x+2)+2] - (4x-2)/[√(4x-1)+1] + (2x-1)(x+2) =0
⇔(2x-1) × [(2x+2)/√(4x2+2x+2+2) - 2/(√4x-1)+1+x+2]=0
Với x≥1/4 thì (2x+2)/(√4x2+2x+2+2)≥0 hoặc x+2>2 hoặc (√4x-1)+1≥1 ⇌ 2/[(√4x-1)+1]≤2
⇒(2x+2)/[(√4x2+2x+2)+2] - 2/[(x-1)+1]+x+2>0-2+2=0
⇌ 2x-1=0⇒x=1/2
Vậy x=1/2
2.
Áp dụng bất đẳng thức ta có :
Vế trái = a4/(ab +2ac) + b4/(bc+2ab) + c4/(ac+2bc)≥[(a2 + b2 +c2)2]/[3(ab+bc+ca) =[(a2+b2+c2)2]/9
Ấp dụng bất đẳng thức ta có :
ab+bc+ca≤a2+b2+c2
Vế trái ≥ [(a2+b2+c2)]/9≥32/9 =1
⇒ Vế trái ≥1 (đpcm)
Dấu = xảy ra khi a=b=c=1
Tính cá tích phân sau:
I = \(\int\limits_0^1 {x^2\over \sqrt{3+2x-x^2}}dx\)
I = \(\int\limits_1^\sqrt2 {\sqrt{x^2-1}\over x}dx\)
I = \(\int\limits_1^2 {x+1\over \sqrt{x(2-x)}}dx\)
I = \(\int\limits_0^1 {dx\over x^2+x+1}\)
Cậu sống ở đâu hở ? Lấy đâu ra toán khó thế ?
giải hộ mình bài này:
So sánh:
a.(2*sqrt 10)+(3*sqrt 3) và (3*sqrt 5)+(2*sqrt 7)
b.(sqrt2 +sqrt3) và 2
THANKS!
a: \(\left(2\sqrt{10}+3\sqrt{3}\right)^2=67+12\sqrt{30}\)
\(\left(3\sqrt{5}+2\sqrt{7}\right)^2=77+12\sqrt{35}\)
mà \(12\sqrt{30}< 12\sqrt{35};67< 77\)
nên \(2\sqrt{10}+3\sqrt{3}< 3\sqrt{5}+2\sqrt{7}\)
b: \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}\)
\(2^2=4\)
mà 5>4
nên \(\sqrt{2}+\sqrt{3}>2\)