Ta có: \(\frac{1}{1+\sqrt2}+\frac{1}{\sqrt2+\sqrt3}+\cdots+\frac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\frac{-1+\sqrt2}{\left(\sqrt2+1\right)\left(\sqrt2-1\right)}+\frac{-\sqrt2+\sqrt3}{\left(\sqrt3-\sqrt2\right)\left(\sqrt3+\sqrt2\right)}+\cdots+\frac{-\sqrt{99}+\sqrt{100}}{\left(\sqrt{100}+\sqrt{99}\right)\left(\sqrt{100}-\sqrt{99}\right)}\)
\(=-1+\sqrt2-\sqrt2+\sqrt3-\cdots-\sqrt{99}+\sqrt{100}\)
\(=-1+\sqrt{100}\)
=-1+10
=9