Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ruy
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 3 2021 lúc 12:07

b) Ta có: \(A=\dfrac{1012+1}{1013+1}\)

\(\Leftrightarrow A-1=\dfrac{1012+1-1013-1}{1013+1}\)

\(\Leftrightarrow A-1=\dfrac{-1}{1013+1}\)

Ta có: \(B=\dfrac{1011+1}{1012+1}\)

\(\Leftrightarrow B-1=\dfrac{1011+1-1012-1}{1012+1}\)

\(\Leftrightarrow B-1=\dfrac{-1}{1012+1}\)

Ta có: \(1013+1>1012+1\)

\(\Leftrightarrow\dfrac{1}{1013+1}< \dfrac{1}{1012+1}\)

\(\Leftrightarrow\dfrac{-1}{1013+1}>\dfrac{-1}{1012+1}\)

\(\Leftrightarrow A-1>B-1\)

hay A>B

Vậy: A>B

ミ★ήɠọς τɾίếτ★彡
7 tháng 3 2021 lúc 11:15

so sánh phải ko bn

 

Nhi Nguyễn Trần Thảo
Xem chi tiết
Trịnh Thùy Linh
2 tháng 4 2018 lúc 12:46

Ta có : Q=\(\frac{1010+1011+1012}{1011+1012+1013}\)=\(\frac{1010}{1011+1012+1013}+\frac{1011}{1011+1012+1013}+\frac{1012}{1011+1012+1013}\)

Vì1010/1011>1010/1011+1012+1013

    1011/1012>1011/1011+1012+1013

    1012/1013>1012/1011+1012+1013

    =>P>Q

khanhngoccony
Xem chi tiết
Bỉ ngạn hoa
Xem chi tiết
 Phạm Trà Giang
23 tháng 4 2019 lúc 19:39

Sửa lại đề tý: \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2020}\) mới có thể tính được nhé!

Ta có: \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2020}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(\Rightarrow A=1-\frac{1}{2020}=\frac{2020}{2020}-\frac{1}{2020}=\frac{2019}{2020}\)

Đến đây bạn tự làm tiếp nhé! Phân tích đến đây là dễ r =)

Bỉ ngạn hoa
23 tháng 4 2019 lúc 19:46

đề là như vậy bạn à ban đầu mk cũng nghĩ là sai đề nhg ko phải tại vì là đề thi HSG

Nguyễn Trọng Nghĩa
16 tháng 7 2020 lúc 9:14

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

ta nhóm số dương một nhóm , số âm 1 nhóm , đặt dấu trừ để đổi dấu số âm

\(A=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2020}\right)\)

ta có công thức =>  a-b=(a+b)-(b+b)=(a+b)-2b

\(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2020}\right)\)

\(A=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)-\left(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{1010}\right)\)

\(A=\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\)

suy ra A=B

Khách vãng lai đã xóa
Giao Khánh Linh
Xem chi tiết
Xyz OLM
24 tháng 11 2019 lúc 8:55

Ta có :\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}=k\left(\frac{1}{1011}+\frac{1}{1012}+\frac{1}{1013}+....+\frac{1}{2020}\right)\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{2019}-\frac{1}{2020}=k\left(\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\right)\)

\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2020}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2020}\right)=k\left(\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\right)\)

\(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2020}-1-\frac{1}{2}-\frac{1}{4}-...-\frac{1}{1010}=k\left(\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\right)\)

\(\Rightarrow\frac{1}{1011}+\frac{1}{1012}+....+\frac{1}{2020}=k\left(\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2020}\right)\)

=> k = 1

=> k là số tự nhiên (đpcm)

Khách vãng lai đã xóa
Cún Tẹt
Xem chi tiết
Nguyễn Thị Kim Loan
Xem chi tiết
T.Thùy Ninh
16 tháng 6 2017 lúc 6:42

\(A=\dfrac{1011-1}{1012-1}=\dfrac{1010}{1011}\)

\(B=\dfrac{1010+1}{1011+1}=\dfrac{1011}{1012}\)

Ta có :

\(1-A=1-\dfrac{1010}{1011}=\dfrac{1}{1011}\)

\(1-B=1-\dfrac{1011}{1012}=\dfrac{1}{1012}\)

NHận thấy \(\dfrac{1}{1011}>\dfrac{1}{1012}\Rightarrow A< B\)

Trần Minh Hoàng
16 tháng 6 2017 lúc 8:26

Ta có:

\(A=\dfrac{1011-1}{1012-1}=\dfrac{1010}{1011}\)

\(B=\dfrac{1010+1}{1011+1}=\dfrac{1011}{1012}\)

Ta lại có:

\(1-\dfrac{1010}{1011}=\dfrac{1}{1011}\)

\(1-\dfrac{1011}{1012}=\dfrac{1}{1012}\)

\(\dfrac{1}{1011}>\dfrac{1}{1012}\Rightarrow\dfrac{1010}{1011}< \dfrac{1011}{1012}\Rightarrow A< B\)

Nguyễn Quảng Đại
7 tháng 1 2016 lúc 16:27

Viết thế này khó hiểu quá!

rô phèn
Xem chi tiết

Giải:

A=10^11-1/10^12-1

10A=10.(10^11-1)/10^12-1

10A=10^12-10/10^12-1

10A=10^12-1-9/10^12-1

10A=10^12-1/10^12-1 + -9/10^12-1

10A=1+ -9/10^12-1

 

B=10^10+1/10^11+1

10B=10.(10^10+1)/10^11+1

10B=10^11+10/10^11+1

10B=10^11+1+9/10^11+1

10B=10^11+1/10^11+1 + 9/10^11+1

10B=1 + 9/10^11+1

Vì -9/10^12-1 < 9/10^11+1 nên 10A < 10B

=>A < B

Chúc bạn học tốt!

Kato kid
Xem chi tiết