\(x^2\)-2+x+4=0
\(9x^4-4x^2=0\)
\(2x^4-x^2-6=0\)
\(x^4-9x^2+100=0\)
\(x^4-3x^2-54=0\)
\(3x^4-10x^2+3=0\)
\(x^4-7x^2-18=0\)
a: \(\Leftrightarrow x^2\left(9x^2-4\right)=0\)
\(\Leftrightarrow x^2\left(3x-2\right)\left(3x+2\right)=0\)
hay \(x\in\left\{0;\dfrac{2}{3};-\dfrac{2}{3}\right\}\)
b: \(\Leftrightarrow2x^4-4x^2+3x^2-6=0\)
\(\Leftrightarrow x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
d: \(\Leftrightarrow x^4-9x^2+6x^2-54=0\)
\(\Leftrightarrow x^2-9=0\)
=>x=3 hoặc x=-3
1) x^2-25+2(x+5)=0
2) x(x-1)+x-1=0
3) (3x-2)^2-(x+2)^2=0
4) 2(x-2)-x^2+4x-4=0
5) 2(x^2+8x+16)-x^2+4=0
\(x^2-25+2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-5\right)+2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-5+2\right)=0\)
\(\left(x+5\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=3\end{cases}}}\)
\(x\left(x-1\right)+x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
P/s tham khảo nha
\(x^2-25+2\left(x+5\right)=0\)
<=> \(\left(x-5\right)\left(x+5\right)+2\left(x+5\right)=0\)
<=> \(\left(x+5\right)\left(x-5+2\right)=0\)
<=> \(\left(x+5\right)\left(x-3\right)=0\)
<=> \(\orbr{\begin{cases}x=-5\\x=3\end{cases}}\)
Vậy....
1. x^4+x^2-2=0; 2. x^3+3x^2+6x+4=0; 3. x^3-6x^2+8x=0; 4. x^4-8x^3-9x^2=0 Giúp với (;~;)
1/ \(x^4+x^2-2=0\)
\(\Leftrightarrow\left(x^2\right)^2-x^2+2x^2-2=0\\ \Leftrightarrow x^2\left(x^2-1\right)+2\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+2=0\\x+1=0\\x-1-0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
2/ \(x^3+3x^2+6x+4=0\)
\(\Leftrightarrow\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(4x+4\right)=0\\ \Leftrightarrow x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^2+2x+4\right)=0\)
\(\Leftrightarrow x+1=0\) (do \(x^2+2x+4=\left(x+1\right)^2+3>0,\forall x\))
\(\Leftrightarrow x=-1\).
3/ \(x^3-6x^2+8x=0\)
\(\Leftrightarrow x\left(x^2-6x+8\right)=0\\ \Leftrightarrow x\left[\left(x^2-2x\right)-\left(4x-8\right)\right]=0\\ \Leftrightarrow x\left[x\left(x-2\right)-4\left(x-2\right)\right]=0\\ \Leftrightarrow x\left(x-2\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=4\end{matrix}\right.\)
4/ \(x^4-8x^3-9x^2=0\)
\(\Leftrightarrow x^2\left(x^2-8x-9\right)=0\\ \Leftrightarrow x^2\left(x^2-9x+x-9\right)=0\\ \Leftrightarrow x^2\left(x\left(x-9\right)+\left(x-9\right)\right)=0\\ \Leftrightarrow x^2\left(x+1\right)\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=9\end{matrix}\right.\)
1) 2x^4-7x^2-4=0
2)(x62+5x^2)-2(x^2+5x)-24=0
3)x^2-2x-3(x-1)+3=0
4)(x+1/x)^2+2(x+1/x)-8=0
5)x(x+1)(x+2)(2x+3)-18=0
7)(x^2+4x+7)=(x+4)nhân vs căn bậc hai cua x^2 +2
Tìm x nguyên biết :
a) (x^2 -5)×(x^2 +1)=0
b)(x+3)×(x^2+1)=0
c)(x+5)×(x^2+1)<0
d)(x+5)×(x^2-4)=0
e)(x-2)×(-x^2-4)>0
g)(x^2+2)×(x+3)>0
h)(x+4)×|x+5|>0
i)(x+3)×(x-5)>0
\(\left(x^2-5\right)\left(x^2+1\right)=0\)
<=> \(\hept{\begin{cases}x^2-5=0\\x^2+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x^2=5\\x^2=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x=\sqrt{5};x=-\sqrt{5}\\x\in\varnothing\end{cases}}\)
câu còn lại tương tự nha
x(x+1)<0
(x-6)(x+4)<0
(x+6)(2x+4)>0
(x^2+1)(x-9)>0
(x^2-7)(x^2-12)<0
(x^2-9)(x^2-4)<0
Dễ mà,e cứ chia 2 TH là đc
Vd:<0 thì chia ra x+2>0 hoac x<0 và nguoc lai roi tìm x
Bài 4: Tìm x:
1) x2 - 9x = 0 2) x(x - 4) – x2 = 7 3) 3x + 2(x – 5) = 5
4) 25x2 - 1 = 0 5) 3x(x - 2) - 5(x - 2) = 0 6) 3x(x - 7) + 4(x – 7) = 0
7) 4x2 – 9 = 0 8) 10x(x - 4) + 2x - 8 = 0 9) x(2x - 5) - 2x2 = 0
10) 2x2 – 4x = 0 11) 2x(3 - 4x) + 3(4x - 3) = 0 12) 2x (x – 5) – 2x2 = 3
mọi người giúp mình vs chiều 1g mình thi rồi! cảm ơn!
\(1,\Leftrightarrow x\left(x-9\right)=0\Leftrightarrow\left[{}\begin{matrix}x=9\\x=0\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\Leftrightarrow-4x=7\Leftrightarrow x=-\dfrac{7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\Leftrightarrow5x=15\Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(x-7\right)\left(3x+4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-\dfrac{4}{3}\end{matrix}\right.\)
\(7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ 8,\Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=4\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ 11,\Leftrightarrow\left(4x-3\right)\left(3-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{2}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\Leftrightarrow-10x=3\Leftrightarrow x=-\dfrac{3}{10}\)
\(1,\Leftrightarrow x\left(x-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\\ 2,\Leftrightarrow x^2-4x-x^2=7\\ \Leftrightarrow-4x=7\\ \Leftrightarrow x=\dfrac{-7}{4}\\ 3,\Leftrightarrow3x+2x-10=5\\ \Leftrightarrow5x=15\\ \Leftrightarrow x=3\\ 4,\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{5}\end{matrix}\right.\)
\(5,\Leftrightarrow\left(x-2\right)\left(3x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\\ 6,\Leftrightarrow\left(3x+4\right)\left(x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=7\end{matrix}\right.\\ 7,\Leftrightarrow\left(2x-3\right)\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
\(8,\Leftrightarrow10x\left(x-4\right)+2\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(10x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{1}{5}\end{matrix}\right.\\ 9,\Leftrightarrow2x^2-5x-2x^2=0\\ \Leftrightarrow-5x=0\\ \Leftrightarrow x=0\\ 10,\Leftrightarrow2x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(11,\Leftrightarrow\left(2x-3\right)\left(4x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{4}\end{matrix}\right.\\ 12,\Leftrightarrow2x^2-10x-2x^2=3\\ \Leftrightarrow-10x=3\\ \Leftrightarrow x=-\dfrac{3}{10}\)
1) \(x^2-9x=0\Rightarrow x\left(x-9\right)=0\Rightarrow x=0;9\)
2) \(x\left(x-4\right)-x^2=7\Rightarrow-4x=7\Rightarrow x=-\dfrac{7}{4}\)
3) \(3x+2\left(x-5\right)=5\Rightarrow5x-10=5\Rightarrow5x=15\Rightarrow x=3\)
4) \(25x^2-1=0\Rightarrow x^2=\dfrac{1}{25}\Rightarrow x=\pm\dfrac{1}{5}\)
5) \(3x\left(x-2\right)-5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(3x-5\right)=0\Rightarrow x=2;\dfrac{5}{3}\)
6) \(3x\left(x-7\right)+4\left(x-7\right)\Rightarrow\left(3x+4\right)\left(x-7\right)=0\Rightarrow x=-\dfrac{4}{3};7\)
7) \(4x^2-9=0\Rightarrow x^2=\dfrac{9}{4}\Rightarrow x=\pm\dfrac{3}{2}\)
8) \(10x\left(x-4\right)+2x-8=0\Rightarrow2\left(x-4\right)\left(5x+1\right)=0\Rightarrow x=4;-\dfrac{1}{5}\)
9) \(x\left(2x-5\right)-2x^2=0\Rightarrow x\left(2x-5-2x=0\right)\Rightarrow x=0\)
10) \(2x^2-4x=0\Rightarrow2x\left(x-2\right)=0\Rightarrow x=0;2\)
11) \(2x\left(3-4x\right)+3\left(4x-3\right)=0\Rightarrow2x\left(4x-3\right)-3\left(4x-3\right)=0\Rightarrow\left(4x-3\right)\left(2x-3\right)=0\Rightarrow x=\dfrac{3}{4};\dfrac{3}{2}\)
12) \(2x\left(x-5\right)-2x^2=3\Rightarrow-10x=3\Rightarrow x=-\dfrac{3}{10}\)
Bài 1 : tìm x biết
a) ( /x/ - 1/4 ) . ( x2 - 9 ) = 0
b) ( /x/ + 2 ) . ( /x/ - 4 ) = 0
c) ( x2 - 1/4 ) . ( x2 - 1/10 ) = 0
d) ( x + 2 ) . ( x - 3 ) < 0
e) ( x - 1/4 ) . ( x + 1/2 ) > 0
d) (x + 2)(x - 3) < 0
Ta có bảng :
x -2 3 |
x + 2 - 0 + + |
x - 3 - - 0 + |
(x + 2)(x - 3) + - + |
Vậy (x + 2)(x - 3) < 0
Khi : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Leftrightarrow}-2< x< 3}\)
Bài 1 : Tìm x biết
a) ( /x/ - 1/4 ) . ( x2 - 9 ) = 0
b) ( /x/ + 2 ) . ( /x/ - 4 ) = 0
c) ( x2 - 1/4 ) . ( x2 - 1/16 ) = 0
d) ( x + 2 ) . ( x - 3 ) < 0
e) ( x - 1/4 ) . ( x + 1/2 ) > 0
tìm x , biết :
a, ( x mũ 3 - 4 x mũ 2 ) - ( x -4 ) = 0
b, x mũ 5 - 9x = 0
c, ( x mxu 3 - x mũ 2 ) mũ 2 - 4 x mũ 2 + 8x - 4 = 0
a/
\(x^3-4x^2-\left(x-4\right)=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=-1\end{matrix}\right.\)
b/
\(x^5-9x=0\)
\(\Leftrightarrow x\left(x^4-9\right)=x\left(x^2-3\right)\left(x^2+3\right)=0\)
\(\Leftrightarrow x\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)
c/
\(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)
\(\Leftrightarrow x^4\left(x-1\right)^2-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^4-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2-2\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\pm\sqrt{2}\end{matrix}\right.\)