\(x^2-2+x+4=-0\)
\(\Leftrightarrow x^2+x+4=0\)
\(\Rightarrow x\in\varnothing\)
Vậy phương trình vô nghiệm.
\(x^2-2+x+4=0\\ \left(x^2+4\right)+\left(x-2\right)=0\\ \left(x-2\right)\cdot\left(x+2\right)+\left(x-2\right)=0\\ \left(x-2\right)\left(x+2+1\right)=0\)
=> \(x-2=0\) hoặc \(x+2+1=0\)
1) \(x-2=0=>x=2\)
2) \(x+2+1=0=>x=-3\)
Vậy \(S=\left\{2;-3\right\}\)