cho 2 số x, y thỏa mãn: 2x2 + 7x + 7y +2xy + y2 + 12 =0
Tìm min, max của biểu thức P= x+ y+ 2
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
bt x,y thỏa mãn x2+2xy+6x+6y+2y2+8=0
tìm max và min của B=x+y+2020
\(x^2+2xy+y^2+6\left(x+y\right)+8=-y^2\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+8\le0\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+y+4\right)\le0\)
\(\Rightarrow-4\le x+y\le-2\)
\(\Rightarrow2016\le B\le2018\)
\(B_{min}=2016\) khi \(\left(x;y\right)=\left(-4;0\right)\)
\(B_{max}=2018\) khi \(\left(x;y\right)=\left(-2;0\right)\)
Cho x,y thỏa mãn 3x2+y2+2xy+4=7x+3y. Tìm Min, Max của P=x+y
Ta có 3x2+y2+2xy+4=7x+3y
<=> (x2 + 2xy + y2 ) - 3(x + y) + 2(x2 - 2x +1) + 2 = 0
<=> P2 - 3P + 9/4 + 2(x - 1)2 - 1/4 = 0
<=> (P - 3/2)2 = 1/4 - 2(x - 1)2
<=> P - 3/2 = 1/4 - 2(x - 1)2 hoặc P - 3/2 = 2(x - 1)2 - 1/4
Tương ứng với mỗi cái ta sẽ có GTLN, GTNN phần còn lại bạn giải nha
Ta có 3x
2+y
2+2xy+4=7x+3y
<=> (x
2 + 2xy + y
2
) - 3(x + y) + 2(x
2
- 2x +1) + 2 = 0
<=> P
2
- 3P + 9/4 + 2(x - 1)2
- 1/4 = 0
<=> (P - 3/2)2 = 1/4 - 2(x - 1)2
<=> P - 3/2 = 1/4 - 2(x - 1)2 hoặc P - 3/2 = 2(x - 1)2
- 1/4
Tương ứng với mỗi cái ta sẽ có GTLN, GTNN phần còn lại bạn giải nha
chúc cậu hok tốt @_@
cho x,y thỏa mãn \(x^2+2y^2+2xy+7x+7y+10=0...\).Tìm GTLN, GTNN của biểu thức A = x+y+1
Ta có
x2 + 2y2 + 2xy + 7x + 7y + 10 = 0
<=> (x + y)2 + 2(x + y) + 1 + 5(x + y + 1) + y2 + 4 = 0
<=> (x + y + 1)2 + 5(x + y + 1) + y2 + 4 = 0
<=> A2 + 5A + y2 + 4 = 0
<=> y2 = - 4 - 5A - A2 \(\ge0\)
<=> \(-4\le A\le-1\)
Vậy GTLN là -1, GTBN là - 4
tìm min,max: B=x+y với x,y là các số thực thỏa mãn pt 3x^2+y^2+2xy-7x-3y+4
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
cho x y z là các số thực không âm thỏa mãn x+y+z=1
tìm min max P= √7x+9 + √7y+9 + √7z+9
+) \(P=\sqrt{7x+9}+\sqrt{7y+9}+\sqrt{7z+9}\)
\(P^2\le3\left(7x+7y+7z+27\right)=102\)
\(P\le\sqrt{102}\)
\(MaxP=102\Leftrightarrow x=y=z=\dfrac{1}{3}\)
+) \(x,y,z\in[0;1]\)\(\Rightarrow\left\{{}\begin{matrix}x\ge x^2\\y\ge y^2\\z\ge z^2\end{matrix}\right.\)
\(P\ge\sqrt{x^2+6x+9}+\sqrt{y^2+6y+9}+\sqrt{z^2+6z+9}\)
\(=x+y+z+9=10\)
\(MinP=10\Leftrightarrow\left(x;y;z\right)=\left(0;0;1\right)\text{và các hoán vị}\)
Bài 1. Cho x,y thỏa mãn 3x2+y2+2xy+4=7x+3y
Tìm Min, Max của P=x+y
Cho số thực x, y thỏa mãn hệ thức: x^2+2xy+7x+7y+2y^2+10=0. Hãy tìm giá tri lớn nhất, nhỏ nhất của: S=x+y+1.