+) \(P=\sqrt{7x+9}+\sqrt{7y+9}+\sqrt{7z+9}\)
\(P^2\le3\left(7x+7y+7z+27\right)=102\)
\(P\le\sqrt{102}\)
\(MaxP=102\Leftrightarrow x=y=z=\dfrac{1}{3}\)
+) \(x,y,z\in[0;1]\)\(\Rightarrow\left\{{}\begin{matrix}x\ge x^2\\y\ge y^2\\z\ge z^2\end{matrix}\right.\)
\(P\ge\sqrt{x^2+6x+9}+\sqrt{y^2+6y+9}+\sqrt{z^2+6z+9}\)
\(=x+y+z+9=10\)
\(MinP=10\Leftrightarrow\left(x;y;z\right)=\left(0;0;1\right)\text{và các hoán vị}\)