biểu thức (x-y)(x2+y2)+xy(x+y) có phải là đa thức nhân tử không
x/y có phải đơn thức ko
phân tích đa thức sau thành nhân tử
a) x2-2x+1
b)x2+2xy-25+y2
c)5x2-10xy
d)x2-y2+x-y
Lời giải:
$\frac{x}{y}$ không phải đơn thức bạn nhé.
a. $x^2-2x+1=(x-1)^2$
b. $x^2+2xy-25+y^2=(x^2+2xy+y^2)-25=(x+y)^2-5^2=(x+y-5)(x+y+5)$
c. $5x^2-10xy=5x(x-2y)$
d. $x^2-y^2+x-y=(x^2-y^2)+(x-y)=(x-y)(x+y)+(x-y)$
$=(x-y)(x+y+1)$
Bài 2:Phân tích đa thức thành nhân tử chung
a, 4(2-x)2+xy-2y
b, x(x-y)3-y(y-x)2-y2(x-y)
c, x2y-xy2-3x+3y
d, x(x+y)2-y(x+y2)+xy-x2
a) \(4\left(2-x\right)^2+xy-2y\)
\(=4\left(x-2\right)^2+\left(xy-2y\right)\)
\(=4\left(x-2\right)\left(x-2\right)+y\left(x-2\right)\)
\(=\left(x-2\right)\left(4x-8\right)+y\left(x-2\right)\)
\(=\left(x-2\right)\left(4x-8+x-2\right)\)
\(=\left(x-2\right)\left(5x-10\right)\)
\(=5\left(x-2\right)^2\)
a, \(=4\left(x-2\right)^2+y\left(x-2\right)=\left(x-2\right)\left(4x-8+y\right)\)
b, \(=x\left(x-y\right)^3-y\left(x-y\right)^2-y^2\left(x-y\right)=\left(x-y\right)\left[x\left(x-y\right)^2-y\left(x-y\right)-y^2\right]=\left(x-y\right)\left[x\left(x^2-2xy+y^2\right)-xy+y^2-y^2\right]=\left(x-y\right)\left(x^3-2x^2y+xy^2-xy\right)=x\left(x-y\right)\left(x^2-2xy+y^2-y\right)\)
c, \(=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\)
d, không phân tích được
c, x2y - xy2 - 3x + 3y
= xy(x-y) - 3(x-y)
= (x-y)(x-3)
Kết quả phân tích đa thức x2 + 2xy + y2 – 9x – 9y thành nhân tử là :
A.( x + y + 3) ( x + y – 3) (x + y )
B.( x + y – 9) (x + y )
C. ( x + y – 3) (x + y )
D. ( x – y – 9) (x – y )
Phân tích đa thức sau thành nhân tử : x2 -x-y2 -y, ta được kết quả là: A. (x+y)(x-y-1) B. (x-y)(x+y+1) C.(x+y)(x+y-1) D.(x-y)(x+y-1)
Phân tích đa thức sau thành nhân tử : x2 -4x-y2 +4 ta được kết quả là:
A .(x+2-y)(x+2+y)
B. (x-y+2)(x+y-2)
C. (x-2-y)(x-2+y)
D.(x-y-2)(x-y+2)
Đa thức 25 – a2 + 2ab + b2 + được phân tích thành:
A. (5 + a – b)(5 – a – b)
B. (5 + a + b)(5 – a – b)
C. (5 + a + b)(5 – a + b)
D. (5 + a – b)(5 – a + b)
Phân tích đa thức thành nhân tử:
a) 2 x 3 - x 2 - 8x + 4; b) 4 x 2 - 16 x 2 y 2 + y 2 + 4xy;
c) x 3 - 16x - 15x(x - 4); d) x ( x - y ) 2 + y ( x - y ) 2 - xy + x 2 .
Phân tích đa thức thành nhân tử:
x2 + y2 - x2y2 + xy - x - y
x2 + y2 - x2y2 + xy - x - y = (x2-x) + (y2-y) + (-x2y2 + xy) = x(x+1) + y(y+1) + xy(xy+1) = ( x+ y+ xy)( x + 1 + y + 1 + xy + 1)
\(x^2+y^2-x^2y^2+xy-x-y\)
\(=\left(x^2-x\right)+\left(y^2-y\right)+ \left(-x^2y^2+xy\right)\)
\(=x\left(x+1\right)+y\left(y+1\right)+xy\left(xy+1\right)\)
\(=\left(x+y+xy\right)\left(x+1+y+1+xy+1\right)\)
Phân tích đa thức thành nhân tử:
a) 4 ( 2 - x ) 2 + xy - 2y;
b) x ( x - y ) 3 - y ( y - x ) 2 - y 2 (x - y);
c) x 2 y - xy 2 - 3x + 3y;
d) x ( x + y ) 2 - y ( x + y ) 2 + xy - x 2
Câu 28. Đa thức x3 -2x2 +x-y2 xđược phân tích thành nhân tử là
A. (x-1+y)(x+1+y) B. x(x+1+y)(x-1-y)
C. x(x-1-y2) D. x(x-1+y)(x-1-y)
Câu 29. Biểu thức P= x2 -2x + 3 có giá trị nhỏ nhất là
A. Pmin= 1 B. Pmin = 2 C. Pmin = 5 D. Pmin = 3
\(28,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]\\ =x\left(x-y-1\right)\left(x+y-1\right)\left(D\right)\\ 29,P=\left(x-1\right)^2+2\ge2\left(B\right)\)
Khi phân tích đa thức x2 + 4x – 2xy – 4y + y2 thành nhân tử, bạn Việt làm như sau:
x2 + 4x – 2xy – 4y + y2 = (x2 - 2xy + y2) + (4x – 4y)
= (x - y)2 + 4(x – y)
= (x – y)(x – y + 4).
Em hãy chỉ rõ trong cách làm trên, bạn Việt đã sử dụng những phương pháp nào để phân tích đa thức thành nhân tử.
x2 + 4x – 2xy – 4y + y2 = (x2-2xy+ y2) + (4x – 4y) → bạn Việt dùng phương pháp nhóm hạng tử
= (x - y)2 + 4(x – y) → bạn Việt dùng phương pháp dùng hằng đẳng thức và đặt nhân tử chung
= (x – y)(x – y + 4) → bạn Việt dùng phương pháp đặt nhân tử chung
a) Phân tích đa thức thành nhân tử: x2 + 2xy + y2 – 4
b) Rút gọn rồi tính giá trị biểu thức: (y +2x )(y – 2x) + 4x2 tại x = 2021 và y = 10
a, \(=\left(x+y\right)^2-2^2=\left(x+y-2\right)\left(x+y+2\right)\)
b, = \(y^2-4x^2+4x^2=y^2\)
Thay y = 10 vào BT trên, ta có:
\(y^2=10^2=100\)
Vậy giá trị của BT là 100