tìm x
x * 3 = 9
x * 9 = 27
x * 2 = 6
x * 8 = 24
tìm x: x^3-6x^2+12x-8=0
b)16x^2-9(x+1)^2+0
c)-27+27x-9x^2+x^3=0
d)x^2-6x+5=0
d) <=>x2-5x-x+5=0
<=>x(x-5)-(x-5)=0
<=>(x-5)(x-1)=0
<=>x=5 hoặc x=1
Hãy viết đa thức sau dưới dạng tổng: (2 - 3x)(4 + 6x + 9x^2). A.1+27x^3 B. 2+27x^3 C.8-27x^3 D.1-27x^3
(27x^3 - 8):(6x + 9x^2 + 4 )
\(=\dfrac{\left(3x-2\right)\left(9x^2+6x+4\right)}{9x^2+6x+4}=3x-2\)
(27x^3 - 8 ) : ( 6x + 9x ^2 + 4 )
Giải:
\(\left(27x^3-8\right):\left(6x+9x^2+4\right)\)
\(=\dfrac{27x^3-8}{6x+9x^2+4}\)
\(=\dfrac{\left(3x-2\right)\left(9x^2+6x+4\right)}{6x+9x^2+4}\)
\(=3x-2\)
Vậy ...
(27x^3 -8) :(6x +9x^2 + 4)
dúp mình với
Phân tích đa thức thành nhân tử
27x^3+27x^2+9x+1
-x^3-3x^2-3x-1
- 8+12x-6x^2+x^3
a) \(27x^3+27x^2+9x+1=\left(3x+1\right)^3\)
b) \(-x^3-3x^2-3x-1=-\left(x^3+3x^2+3x+1\right)=-\left(x+1\right)^3\)
c) \(-8+12x-6x^2+x^3=\left(x-2\right)^3\)
thực hiện phép tính
a: (6x^5y^2-9x^4y^3+15x^3y^4)/3x^3y^2
b: (27x^3-8)/(6x+9x^2+4)
( 27x3 - 8 ) : ( 6x + 9x2 +4 )
( 27\(x^3\) - 8) : ( 9\(x^2\) + 6x + 4)
= [ \(\left(3x\right)^3\) - 23] : ( 9\(x^2\) + 6x + 4)
= (3x - 2)( 9\(x^2\) + 6x + 4) : ( 9\(x^2\) + 6x + 4)
= 3x - 2
Phân tích đa thức thành nhân tử: 1, x^3+2x^2-6x-27 2, 9x^2+6x-4y^2-4y 3, 12x^3+4x^2-27x-9
1. \(x^3+2x^2-6x-27=\left(x-3\right)\left(x^2+5x+9\right)\)
2. \(9x^2+6x-4y^2-4y=\left(9x^2-4y^2\right)+\left(6x-4y\right)\)
\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)=\left(3x-2y\right)\left(3x+2y+2\right)\)
3. \(12x^3+4x^2-27x-9=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(x^2-\dfrac{9}{4}\right)=\left(x+\dfrac{1}{3}\right)\left(x+\dfrac{3}{2}\right)\left(x-\dfrac{3}{2}\right)\)
1) Ta có: \(x^3+2x^2-6x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)+2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
2: Ta có: \(9x^2+6x-4y^2-4y\)
\(=\left(3x-2y\right)\left(3x+2y\right)+2\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left(3x+2y+2\right)\)
Tìm x.
a) 9x^2 – 6x – 3 = 0
b) x^3 + 9x^2 + 27x + 19 = 0
c) x(x + 5)(x – 5) – (x + 2)(x^2 – 2x + 4) = 3
a)\(9x^2-6x-3=0\)
\(\Leftrightarrow\)\(3x^2-2x-1=0\)
\(\Leftrightarrow\)\(3x^2-3x+x-1=0\)
\(\Leftrightarrow\)\((3x-1)(x-1)=0\)
\(\Leftrightarrow\)\(\left[\begin{array}{} x=1\\ x=-\dfrac{1}{3} \end{array} \right.\)
a) \(9x^2-6x-3=0\)
\(\Leftrightarrow3\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(x^3+9x^2+27x+19=0\)
\(\Leftrightarrow x^2\left(x+1\right)+8x\left(x+1\right)+19\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+8x+19\right)=0\)
\(\Leftrightarrow x=-1\)( do \(x^2+8x+19=\left(x+4\right)^2+3>0\))
c) \(x\left(x+5\right)\left(x-5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)
\(\Leftrightarrow x\left(x^2-25\right)-x^3-8=3\)
\(\Leftrightarrow x^3-25x-x^3=8\Leftrightarrow-25x=11\Leftrightarrow x=-\dfrac{11}{25}\)
a) \(9x^2-6x-3=0\\ \Rightarrow\left(9x^2-9x\right)+\left(3x-3\right)=0\\ \Rightarrow9x\left(x-1\right)+3\left(x-1\right)=0\\ \Rightarrow\left(x-1\right)\left(9x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\9x+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(x^3+9x^2+27x+19=0\\ \Rightarrow\left(x^3+x^2\right)+\left(8x^2+8x\right)+\left(19x+19\right)=0\\ \Rightarrow x^2\left(x+1\right)+8x\left(x+1\right)+19\left(x+1\right)=0\\ \Rightarrow\left(x+1\right)\left(x^2+8x+19\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\x^2+8x+19=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\\left(x^2+8x+16\right)+3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\\left(x+4\right)^2+3=0\left(vôlí\right)\end{matrix}\right.\)