Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tài Tuệ
Xem chi tiết
Oxytocin
5 tháng 7 2023 lúc 17:09

a + b, b + c, c + a đều là các số hữu tỉ

=> 2(a + b + c) là số hữu tỉ

=> a + b + c là số hữu tỉ (do khi 1 số hữu tỉ chia cho 2 sẽ nhận đc 1 số hữu tỉ)

=> a + b + c - (a + b) = c là số hữu tỉ; a + b + c - (b + c) = a là số hữu tỉ; a + b + c - (c + a) = b là số hữu tỉ

=> a, b, c đều là số hữu tỉ (đpcm)

Nguyễn Hoàng Minh
Xem chi tiết
nthv_.
10 tháng 10 2021 lúc 10:07

Tham khảo nha ông:

undefined

Minhchau Trần
Xem chi tiết
Shinichi Kudo
31 tháng 8 2021 lúc 19:55

Để \(\dfrac{2}{x}\) là số nguyên thì \(x\in\left\{-1;1;-2;2\right\}\)

Mà x>0 nên \(x\in\left\{1,2\right\}\)

 

Nguyễn Lê Phước Thịnh
31 tháng 8 2021 lúc 20:20

Để 2/x là số nguyên thì \(x\in\left\{1;2\right\}\)

Nguyễn Khắc Quang
Xem chi tiết
Hatsune Miku
Xem chi tiết
Đoàn Đức Hà
16 tháng 6 2021 lúc 6:31

\(x^3-y^3=2xy\)

\(\Leftrightarrow x^4-xy^3-2x^2y=0\)

\(\Leftrightarrow\left(x^2-y\right)^2-y^2-xy^3=0\)

\(\Leftrightarrow\left(x^2-y\right)^2=y^2\left(1+xy\right)\)

\(\Leftrightarrow1+xy=\left(\frac{x^2-y}{y}\right)^2\)

Ta có đpcm. 

Khách vãng lai đã xóa
Giao Khánh Linh
Xem chi tiết
Đào Thu Hòa 2
20 tháng 11 2019 lúc 20:59

Đẳng thức đã cho tương đương với 

\(x^2+2xy+y^2+\left(\frac{xy+1}{x+y}\right)^2=2+2xy.\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\frac{xy+1}{x+y}\right)^2-2\left(xy+1\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2-2\left(x+y\right).\frac{xy+1}{x+y}+\left(\frac{xy+1}{x+y}\right)^2=0\)

\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2=0\)

\(\Leftrightarrow x+y-\frac{xy+1}{x+y}=0\)

\(\Leftrightarrow\left(x+y\right)^2=xy+1\)

\(\Leftrightarrow\sqrt{1+xy}=|x+y|\)

Vì x,y là số hữu tỉ nên Vế phải của đẳng thức là số hữu tỉ => Điều phải chứng minh

Khách vãng lai đã xóa
♕ℰლρℰℜ❍ℜ✟
Xem chi tiết
Lê Hải Dương
18 tháng 8 2021 lúc 16:55

a = 2

b = 8

c = 1

d = 7

e = 3

h = 2

Khách vãng lai đã xóa
Ng Gia Thịnh
2 tháng 8 2022 lúc 10:09

trả lời như v k ai hiểu đc

Nguyễn Thùy Linh
Xem chi tiết
Hello Hello
Xem chi tiết
Nguyễn Linh Chi
26 tháng 6 2019 lúc 13:52

Ta có: 2a+3b là số hữu tỉ 

=> 5(2a+3b)=10a+15b là số hữu tỉ 

5a-4b là số hữu tỉ

=> 2(5a-4b)=10a -8b là số hữu tỉ

=> (10a+15b)-(10a-8b)=10a+15b-10a+8b=23b

=> b là số hữu tỉ

=> 3b là số hữu tỉ

=> (2a+3b)-3b =2a là số hữu tỉ

=> a là số hữu tỉ