Cho x, y là các số hữu tỉ khác 1 thỏa mãn: \(\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\)
Chứng minh rằng: \(_{M=x^2+y^2-xy}\)là bình phương của một số hữu tỉ
Cho x,y là các số hữu tỉ khác -1 thỏa mãn:
\(\frac{1-2x}{1-x}=\frac{1-2y}{1-y}=1\)
Chứng minh: \(x^2+y^2-xy\)là bình phương của một số hữu tỉ.
Cho x,y là cấc số hữu tỉ khác 0 thỏa mãn \(x^5+y^5 = 2x^3y^3\) . Chứng minh nếu m=1-\(\frac{1}{xy}\)thì m là bình phương của 1 số hữu tỉ
Cho x,y nguyên dương khác 0 thỏa mãn x^5+y^5=2x^3y^3. Cmr 1-1/xy là Bình phương của một số hữu tỉ.
(1-2x)/(1-x)+(1-2y)/(1-y)=1
Cm M=x^2+y^2-xy là bình phương của một số hữu tỉ
cho x,y là hai số hữu tỉ khác 0 thỏa mãn
x5+y5=2x3y3
chứng minh rằng \(1-\frac{1}{xy}\) là bình phương của 1 số hữu tỉ
Cho x,y là các số hữu tỉ thỏa mãn \(x^2+y^2+\left(\frac{xy+1}{x+y}\right)^2=2\)
Cm 1+xy là bình phương của một số hữu tỉ
giả sử các số x,y thỏa mãn x5+y5=2x2y2. chứng minh rằng 1-xy là bình phương của một số hữu tỉ
cho các số hữu tỉ x,y,z khác 0 thỏa mãn ĐK x+y+z=0
c/ m: A=1/x²+1/y²+1/z² là bình phương của một số hữu tỉ