Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đấng ys
Xem chi tiết
Trên con đường thành côn...
24 tháng 8 2021 lúc 11:03

https://olm.vn/hoi-dap/detail/227981379332.html

Bạn tham khảo ở đây nhé.

nguyenthanhthuy
Xem chi tiết
N.T.M.D
Xem chi tiết
Yeutoanhoc
13 tháng 6 2021 lúc 16:17

Với mọi số thực ta luôn có:

`(x-y)^2>=0`

`<=>x^2-2xy+y^2>=0`

`<=>x^2+y^2>=2xy`

`<=>(x+y)^2>=4xy`

`<=>(x+y)^2>=16`

`<=>x+y>=4(đpcm)`

Thanh Quân
13 tháng 6 2021 lúc 17:34

\(\dfrac{1}{x+3}+\dfrac{1}{y+3}=\dfrac{x+3+y+3}{\left(x+3\right)\left(y+3\right)}\)

\(=\dfrac{x+y+6}{3x+3y+13}\)(vì \(xy=4\))

=> \(\dfrac{x+y+6}{3x+3y+13}\)\(\dfrac{2}{5}\)

<=> \(5\left(x+y+6\right)\)\(2\left(3x+3y+13\right)\)

<=>\(6x+6y+26-5x-5y-30\)\(0\)

<=> \(x+y-4\)\(0\)

Áp dụng BĐT AM-GM \(\dfrac{a+b}{2}\)\(\sqrt{ab}\)

Ta có \(\dfrac{x+y}{2}\)\(\sqrt{xy}\)

<=>\(x+y\) ≥ 2\(\sqrt{xy}\)

=>2\(\sqrt{xy}-4\)\(0\)

<=> \(4-4\)≥0

<=>0≥0 ( Luôn đúng )

Vậy \(\dfrac{1}{x+3}+\dfrac{1}{y+3}\)\(\dfrac{2}{5}\)

 

Hà Thị Vân Anh
Xem chi tiết
Cao Phan Tuấn Anh
31 tháng 12 2015 lúc 22:01

lớp 6 thì biến đi thằng em

nguyen nguyet anh
Xem chi tiết
tth_new
14 tháng 5 2019 lúc 8:34

Câu hỏi của Kaitou Kid(Kid-sama) - Toán lớp 7 . Bạn check thử cái cách "Bài này lớp 7 dư sức giải..." nhé! Mình đọc nhiều đề thi hsg để tự luyện thấy lời giải của họ như vậy (không có chỗ dấu "=" xảy ra nha,cái chỗ này mình tự thêm) .Không biết đúng hay sai.Còn mấy cách kia là mình tự làm nhé!

Nguyễn Ngọc Thạch
Xem chi tiết
Vương Thị Quỳnh Anh
Xem chi tiết
Thắng Nguyễn
20 tháng 9 2017 lúc 11:19

Đặt \(\left(x,y,z\right)\rightarrow\left(a,b,c\right)\) (chẳng có lý do j đâu mình gõ a,b,c quen hơn thôi)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có: 

\(3P=\frac{3\sqrt{ab}}{c+3\sqrt{bc}}+\frac{3\sqrt{bc}}{a+3\sqrt{bc}}+\frac{3\sqrt{ca}}{b+3\sqrt{ca}}\)

\(=3-\left(\frac{a}{a+3\sqrt{bc}}+\frac{b}{b+3\sqrt{ca}}+\frac{c}{c+3\sqrt{ab}}\right)\)

\(\le3-\left[\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}\right]\)

\(\le3-\left[\frac{\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)+3\left(ab+bc+ca\right)}\right]\)

\(\le3-\left[\frac{\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)+\frac{\left(a+b+c\right)^2}{3}}\right]=3-\frac{9}{4}=\frac{3}{4}\)

Xảy ra khi \(a=b=c\)

Thiên Đạo Pain
29 tháng 6 2018 lúc 20:50

lý do đặt x,y,z= a,b,c 

chỉ để copy nhanh hơn thôi :))  

Tiểu Bạch Kiểm
Xem chi tiết
Yeutoanhoc
1 tháng 3 2021 lúc 21:35

Áp dụng BĐT cosi:

`(y-1)+1>=2\sqrt{y-1}`

`=>\sqrt{y-1}<=y/2`

`=>x\sqrt{y-1}<=(xy)/2`

Hoàn toàn tương tự:

`\sqrt{x-1}<=x/2`

`=>y\sqrt{x-1}<=(xy)/2`

`=>x\sqrt{y-1}+y\sqrt{x-1}<=xy`

Dấu "=" xảy ra khi `x=y=2`

Nguyễn Minh Tuấn
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 10 2021 lúc 14:21

Áp dụng BĐT cosi: \(x+y\ge2\sqrt{xy}\)

\(\Leftrightarrow2\ge2\sqrt{xy}\\ \Leftrightarrow\sqrt{xy}\le1\\ \Leftrightarrow xy\le1\)

Dấu \("="\Leftrightarrow x=y=1\)