Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huỳnh phương Khuê
Xem chi tiết
Bùi Đậu Quỳnh Trang
Xem chi tiết
Bùi Đậu Quỳnh Trang
30 tháng 10 2018 lúc 18:23

Mong mọi người giúp với, mình đang cần gấp!!! Thanks

Trần Khuyên
30 tháng 10 2018 lúc 18:28

a) (x+3)^2-(x-5)(x+5)-6x

= x^2+6x+9-x^2+25-6x

= 9+25

= 94

vậy...

Trần Khuyên
30 tháng 10 2018 lúc 18:32

b) ta có: 25x^2-90x+100

= (5x)^2 - 2.5x.9 + 9^2 + 19

= (5x-9)^2 + 19

vì (5x-9)^2 >= 0 và 19>0 nên...

ĐInh Cao Quang Trung
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 11 2021 lúc 21:14

\(a,x^2-6xy+9y^2+1=\left(x-3y\right)^2+1\ge1>0\\ b,-25x^2+5x-1=-\left(25x^2+2\cdot5\cdot\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(5x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\)

Bảo Thiii
Xem chi tiết
Trần Thị Tấn Tài
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 8 2020 lúc 20:19

Bài 1: Chứng minh

a) Ta có: \(x^2-6x+10\)

\(=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-3\right)^2+1\ge1>0\forall x\)

hay \(x^2-6x+10>0\forall x\)(đpcm)

b) Ta có: \(10-y^2-26\)

\(=-y^2+10y-26\)

\(=-\left(y^2-10y+26\right)\)

\(=-\left(y^2-10y+25+1\right)\)

\(=-\left(y-5\right)^2-1\)

Ta có: \(\left(y-5\right)^2\ge0\forall y\)

\(\Rightarrow-\left(y-5\right)^2\le0\forall y\)

\(\Rightarrow-\left(y-5\right)^2-1\le-1< 0\forall y\)

hay \(10-y^2-26< 0\forall y\)

Bài 2:

a) Ta có: \(9+30x+25x^2\)

\(=25x^2+30x+9\)

\(=\left(5x\right)^2+2\cdot5x\cdot3+3\)

\(=\left(5x+3\right)^2\)

Ta có: \(\left(5x+3\right)^2\ge0\forall x\)

Dấu '=' xảy ra khi 5x+3=0

\(\Leftrightarrow5x=-3\)

hay \(x=-\frac{3}{5}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(9+30x+25x^2\) là 0 khi \(x=-\frac{3}{5}\)

b) Sửa đề: Tìm giá trị nhỏ nhất

Ta có: \(4x^2-6x+1\)

\(=\left(2x\right)^2-2\cdot2x\cdot\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{5}{4}\)

\(=\left(2x-\frac{3}{2}\right)^2-\frac{5}{4}\)

Ta có: \(\left(2x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\forall x\)

Dấu '=' xảy ra khi \(2x-\frac{3}{2}=0\)

\(\Leftrightarrow2x=\frac{3}{2}\)

hay \(x=\frac{3}{4}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(4x^2-6x+1\)\(-\frac{5}{4}\) khi \(x=\frac{3}{4}\)

murad airi
22 tháng 8 2020 lúc 20:51

cảm ơn nhiều

Hàn Vũ Nhi
Xem chi tiết
Kiệt Nguyễn
6 tháng 11 2019 lúc 11:52

a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)

b) \(x-x^2-3=-\left(x^2-x+3\right)\)

\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)

\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)

Khách vãng lai đã xóa
Thanh
24 tháng 8 lúc 12:24

x²-2x+2=(x²-2x+1)+1=( x-1)²+1

Mà (x-1)²≥0 với mọi x

=> (x-1)²+1>0 với mọi x

=> x²-2x+2>0 với mọi x

Nguyen Thao
Xem chi tiết
Nguyễn Nam
4 tháng 12 2017 lúc 21:35

a) \(x^2-x+1\)

\(=\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

b) \(x^2+2x+2\)

\(=\left(x^2+2x+1\right)+1\)

\(=\left(x+1\right)^2+1>0\forall x\)

c) \(-x^2+4x-5\)

\(=-x^2+4x-4-1\)

\(=-\left(x^2-4x+4\right)-1\)

\(=-\left(x-2\right)^2-1< 0\forall x\)

Nguyễn Nam
4 tháng 12 2017 lúc 21:43

1)

a) \(3x^3y^2-6x^2y^3+9x^2y^2\)

\(=3x^2y^2\left(x-2y+3\right)\)

b) \(5x^2y^3-25x^3y^4+10x^3y^3\)

\(=5x^2y^3\left(1-5xy+2x\right)\)

bui manh duc
Xem chi tiết
Ẩn danh
Xem chi tiết
Lấp La Lấp Lánh
24 tháng 9 2021 lúc 7:46

\(A=\left(x-1\right)\left(x-3\right)+2=x^2-4x+3+2=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1>0\forall x\)