Dùng các thẻ thể hiện số.
Bài 6.6. Một hộp đựng 10 thẻ dùng để đặt trên bàn trong quán cà phê gồm các số 1; 2; 3; 4; 5; 6; 7; 8; 9; 10. Chọn ngẫu nhiên một thẻ trong hộp để bỏ trên bàn trong quán cà phê. Tính xác suất của mỗi biến cố sau : a) “Số xuất hiện trên thể được chọn là các số chia hết cho 2 và chia hết cho 5”. b) “Số xuất hiện trên thể được rút ra là các số chia hết cho 2 nhưng không chia hết cho 5”. c) “Số xuất hiện trên thể được rút ra là các số chia hết cho 3 nhưng không chia hết cho 9Bài 6.6. Một hộp đựng 10 thẻ dùng để đặt trên bàn trong quán cà phê gồm các số 1; 2; 3; 4; 5; 6; 7; 8; 9; 10. Chọn ngẫu nhiên một thẻ trong hộp để bỏ trên bàn trong quán cà phê. Tính xác suất của mỗi biến cố sau : a) “Số xuất hiện trên thể được chọn là các số chia hết cho 2 và chia hết cho 5”. b) “Số xuất hiện trên thể được rút ra là các số chia hết cho 2 nhưng không chia hết cho 5”. c) “Số xuất hiện trên thể được rút ra là các số chia hết cho 3 nhưng không chia hết cho 9
a: \(\Omega=\left\{1;2;3;4;5;6;7;8;9;10\right\}\)
=>\(n\left(\Omega\right)=10\)
Gọi A là biến cố "Số xuất hiện trên thẻ được chọn là số chia hết cho 2 và chia hết cho 5"
Số vừa chia hết cho 2 và vừa chia hết cho 5 trong các số 1;2;3;...;10 là 10
=>A={10}
=>n(A)=1
\(P_A=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{1}{10}\)
b: Gọi B là biến cố "Số xuất hiện trên thẻ là số chia hết cho 2 và không chia hết cho 5"
Các số chia hết cho 2 và không chia hết cho 5 trong tập hợp \(\Omega\) là 2;4;6;8
=>B={2;4;6;8}
=>n(B)=4
=>\(P\left(B\right)=\dfrac{4}{10}=\dfrac{2}{5}\)
c: Gọi C là biến cố "Số xuất hiện trên thẻ là số chia hết cho 3 và không chia hết cho 9"
Các số chia hết cho 3 nhưng không chia hết cho 9 trong tập hợp \(\Omega\) là 3;6
=>C={3;6}
=>n(C)=2
=>\(P\left(C\right)=\dfrac{2}{10}=\dfrac{1}{5}\)
Một hộp có 52 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, …, 51, 52; hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên một thẻ trong hộp.
a) Viết tập hợp M gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra.
b) Xét biến cố “Số xuất hiện trên thẻ để rút ra là số bé hơn 10”. Nêu những kết quả thuận lợi cho biến cố trên.
c) Xét biến cố “Số xuất hiện trên thẻ thẻ được rút ra là số chia cho 4 và 5 đều có số dư là 1”. Nêu những kết quả thuận lợi cho biến cố trên.
a) Tập hợp M gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra là:
M = {1, 2, 3, …, 51, 52}
b) Trong các số 1, 2, 3, …, 51, 52, có chín số bé hơn 10 là: 1, 2, 3, 4, 5, 6, 7, 8, 9.
Vậy có chín kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ để rút ra là số bé hơn 10” là: 1, 2, 3, 4, 5, 6, 7, 8, 9 (lấy ra từ tập hợp M = {1, 2, 3, …, 51, 52}).
c) Trong các số 1, 2, 3, …, 51, 52, có ba số chia cho 4 và 5 đều có số dư là 1 là: 1, 21, 41
Vậy có ba kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ để rút ra là số chia cho 4 và 5 đều có số dư là 1” là: 1, 21, 41 (lấy ra từ tập hợp M = {1, 2, 3, …, 51, 52}).
Một hộp có 5 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, 4, 5; hai thẻ khác nhau thì ghi hai số khác nhau.
Rút ngẫu nhiên một chiếc thẻ trong hộp.
a) Nếu những kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra.
b) Số xuất hiện trên thẻ được rút ra có phải là phần tử của tập hợp {1; 2; 3; 4; 5} hay không?
c) Viết tập hợp các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra.
d) Nêu hai điều cần chú ý trong mô hình xác suất của trò chơi trên.
a) Có 5 kết quả có thể xảy ra tương ứng 5 số trên 5 chiếc thẻ có trong hộp
b) Số xuất hiện trên thẻ được rút ra có là phần tử của tập hợp {1; 2; 3; 4; 5}
c)Tập hợp các kết quả có thể xảy ra đối với mỗi thẻ được lấy ra là {1; 2; 3; 4; 5}. Ở đây, 1 kí hiệu cho kết quả lấy được chiếc thẻ có ghi số 1, 2 kí hiệu cho kết quả lấy được chiếc thẻ có ghi số 2, 3 kí hiệu cho kết quả lấy được chiếc thẻ có ghi số 3, 4 kí hiệu cho kết quả lấy được chiếc thẻ có ghi số 4, 5 kí hiệu cho kết quả lấy được chiếc thẻ có ghi số 5.
d) Có hai điều cần chú ý trong mô hình xác suất của trò chơi trên là:
Lấy ngẫu nhiên một chiếc thẻ có trong hộp
Tập hợp các kết quả có thể xảy ra đối với mỗi thẻ được lấy ra là {1; 2; 3; 4; 5}. Ở đây, 1 kí hiệu cho kết quả lấy được chiếc thẻ có ghi số 1, 2 kí hiệu cho kết quả lấy được chiếc thẻ có ghi số 2, 3 kí hiệu cho kết quả lấy được chiếc thẻ có ghi số 3, 4 kí hiệu cho kết quả lấy được chiếc thẻ có ghi số 4, 5 kí hiệu cho kết quả lấy được chiếc thẻ có ghi số 5.
Một hộp có 52 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, …, 51, 52. Hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên một thẻ trong hộp. Tìm số phần tử của tập hợp C gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra. Sau đó, hãy tính xác suất của mỗi biến cố sau:
a) “Số xuất hiện trên thẻ được rút ra là số có một chữ số”;
b) “Số xuất hiện trên thẻ được rút ra là số khi chia cho 4 và 5 đều có số dư là 1”;
c) “Số xuất hiện trên thẻ được rút ra là số có tổng các chữ số bằng 4”.
Tập hợp gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ rút ra là: B = {1, 2, 3, …, 51, 52}.
Số phần tử của B là 52.
a) Có chín kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số có một chữ số” là: 1, 2, 3, 4, 5, 6, 7, 8, 9.
Vì thế, xác suất của biến cố trên là: \(\dfrac{9}{{52}}\)
b) Có ba kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số khi chia cho 4 và 5 đều có số dư là 1” là: 1, 21, 41.
Vì thế, xác suất của biến cố trên là: \(\dfrac{3}{{52}}\)
c) Ta có: \(4 = 0 + 4 = 1 + 3 = 2 + 2\)
Có năm kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số có tổng các chữ số bằng 4” là: 4, 13, 22, 31, 40.
Vì thế, xác suất của biến cố trên là: \(\dfrac{5}{{52}}\)
Một hộp có 10 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1; 2; …; 10. Hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên một thẻ trong hộp.
a. Viết tập hợp A kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra
b. Viết tập hợp B các kết quả thuận lợi cho biến cố “số xuất hiện trên thẻ được rút ra là số nguyên tố”.
c. Tính xác suất cho biến cố “số xuất hiện trên thẻ được rút ra là số nguyên tố”.
a: A={1;2;3;...;10}
b: B={2;3;5;7}
=>P(B)=4/10=2/5
Một hộp có 50 chiếc thể cùng loại, mỗi thẻ được ghi một trong các số 1; 2; 3; 4; ...; 49; 50; hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên một thẻ trong hộp. Tính xác suất của mỗi biển cố sau:
a) “Số xuất hiện trên thẻ được rút ra là số có chứa chữ số 5".
b) “Số xuất hiện trên thẻ được rút ra là ước của 50".
c) “Số xuất hiện trên thẻ được rút ra là bội của 10".
d) “Số xuất hiện trên thẻ được rút ra là số lớn hơn 30".
a: Tập hợp các kết quả có thể xảy ra là \(\Omega=\left\{1;2;3;4;...;49;50\right\}\)
=>\(n\left(\Omega\right)=50\)
Gọi A là biến cố:"Số xuất hiện trên thẻ được rút ra là số có chứa chữ số 5"
=>A={5;15;25;35;45;50}
=>n(A)=6
=>\(P\left(A\right)=\dfrac{6}{50}=\dfrac{3}{25}\)
b: Gọi B là biến cố:“Số xuất hiện trên thẻ được rút ra là ước của 50"
=>B={1;2;5;10;25;50}
=>n(B)=6
\(P\left(B\right)=\dfrac{6}{50}=\dfrac{3}{25}\)
c: Gọi C là biến cố: "Số xuất hiện trên thẻ được rút ra là bội của 10"
Các bội của 10 trong tập hợp A là 10;20;30;40;50
=>C={10;20;30;40;50}
=>n(C)=5
=>\(P\left(C\right)=\dfrac{5}{50}=\dfrac{1}{10}\)
d: Gọi D là biến cố:"Số xuất hiện trên thẻ được rút ra là số lớn hơn 30"
Các số lớn hơn 30 trong tập hợp A là: 31;32;...;49;50
=>n(D)=20
=>\(P\left(D\right)=\dfrac{20}{50}=\dfrac{2}{5}\)
10. Cho sáu thẻ số 2 3 4 5 6 8
Từ các thẻ số trên,hãy dùng các dấu''+''để xếp thành các dãy tính có kết quả bằng 14
Là gì vậy các bạn.Các bạn có thể giải bài toán này giúp mình không
6+8=14
6+5+3=14
4+5+5=14
2+3+4+5=14
8+2+4=14
Câu 19. Một hộp có 5 cái thẻ có kích thước giống nhau và được đánh số lần lượt là 1; 2; 4; 7; 11. Rút ngẫu nhiên một thẻ trong hộp.
a) Viết tập hợp A gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra.
b) Tính xác suất của các biến cố:
M : “ Rút được thẻ ghi số là số chẵn” ;
N : “ Rút được thẻ ghi số là số nguyên tố”.
a) A = {1; 2; 4; 7; 11}
b) Xác suất của biến cố M:
2 : 5 . 100% = 40%
Xác suất của biến cố N:
3 : 5 . 100% = 60%
Câu 19. Một hộp có 5 cái thẻ có kích thước giống nhau và được đánh số lần lượt là 1; 2; 4; 7; 11. Rút ngẫu nhiên một thẻ trong hộp.
a) Viết tập hợp A gồm các kết quả có thể xảy ra đối với số xuất hiện trên thẻ được rút ra.
b) Tính xác suất của các biến cố:
M : “ Rút được thẻ ghi số là số chẵn” ;
N : “ Rút được thẻ ghi số là số nguyên tố”.
Lời giải:
a. $A=\left\{1;2;4;7;11\right\}$
b.
Rút ngẫu nhiên 1 thẻ từ hộp, có 5 khả năng (1,2,4,7,11)
Rút được thẻ ghi số chẵn, tức là rút phải thẻ $2,4$ (2 khả năng)
Rút được thẻ ghi số nguyên tố, tức là rút phải thẻ $2,7,11$ (3 khả năng)
Xác suất để biến cố M xảy ra: $\frac{2}{5}$
Xác suất để biến cố N xảy ra: $\frac{3}{5}$
Các chữ số 1 - 9 được viết trên 9 thẻ. An có các chữ số 7, 2 và 4. Bình có các chữ số 6, 5, 1 và Đức có 8, 3 và 9. Mỗi người sử dụng một số phép tính cộng trừ nhân chia và mỗi thẻ được dùng đúng một lần. Bạn nào không thể có kết quả bằng 20?
Trên thẻ của An có thể có kết quả là 20 vì : ( 7 - 2 ) x 4 = 20
Trên thẻ của Đức cũng có kết quả là 20 vì : 8 + 3 + 9 = 20
Trên thẻ của Bình không có kết quả là 20
Xét các thẻ của từng bạn, ta có:
An có các chữ số 7, 2 và 4. Có kết quả bằng 20 vì (7 - 2) x 4 = 20
Đức có các chữ số 8, 3 và 9. Có kết quả bằng 20 vì 8 + 3 + 9 = 20
Bình có các chữ số 6, 5 và 1. Không thể có kết quả bằng 20
Ta có x x 4 = 20
=> x = 5
Vì 7 - 2 = 5 nên An có thể viết
8 + 3 + 9 = 20
Vậy An thỏa mãn
Từ 3 chữ số 6 ; 5 ; 1 ko thể viết được bất kì phép tính có kết quả là 20