Chứng minh đa thức f(x) = 5x2 – 10x + 20 không có nghiệm
Câu 1 : Tìm nghiệm của đa thức f(x)= x^2+2x-3
Câu 2 : Chứng minh đa thức q(x)=x^2-10x+29 không có nghiệm !
Giúp mk với !
Câu 1 :
Ta có: \(f\left(x\right)=0\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow\left(x+1\right)^2-4=0\)
\(\Leftrightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)
Vậy \(x\in\left\{-5;3\right\}\)là nghiệm của đa thức f(x)
Câu 2 :
\(q\left(x\right)=x^2-10x+29\)
\(=\left(x-5\right)^2+4\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-5\right)^2+4\ge4\forall x\)
Vậy đa thức trên ko có nghiệm
dễ mà
câu 1
f(x)=x^2+2x-3
ta có f(x)=0
suy ra x^2+2x-3=0
tương đương:x^2-x+3x-3=0
tương đương:x(x-1)+3(x-1)=0
tương đương: (x-1)(x+3)=0
tương đương: x-1=0 x=1
x+3=0 x=-3
vậy đa thức f(x) có hai nghiệm là 1 và -3
câu 2: x^2-10x+29
tương đương: x^2-5x-5x+25+4
tương đương: x(x-5)-5(x-5)+4
tương đương: (x-5)(x-5)+4
tương đương: (x-5)^2+4
vì (x-5)^2> hoặc bằng 0 với mọi x
4>0
suy ra x^2-10x+29 vô nghiệm
3 k nha bạn tốt quá mình đag cần gấp :)
Chứng minh đa thức sau vô nghiệm f(x)=5x2 +9
\(5x^2+9>=9>0\forall x\)
nên f(x) vô nghiệm
Cho `f(x)=0`
`=>5x^2+9=0`
`=>5x^2=-9` (Vô lí vì `5x^2 >= 0` mà `-9 < 0`)
Vậy đa thức `f(x)` vô nghiệm
tâ có 5x2≥0∀x
mà 9 > 0
=>5x2 +9>0
hay đa thức sau vô nghiệm
Câu 13. (1,0 điểm) Cho đa thức f(x) = ax2 + bx + c.
a) Chứng tỏ rằng nếu a + b + c = 0 thì đa thức f(x) có một nghiệm x = 1.
b) Áp dụng tìm một nghiệm của đa thức: f(x) = 5x2 – 6x + 1
a: f(1)=a+b+c=0
=>x=1 là nghiệm
b: Vì 5-6+1=0
nên f(x)=5x^2-6x+1 có một nghiệm là x=1
Chứng minh các đa thức sau không có nghiệm
a, f(x)=x2-10x+27
b, g(x)=x2+2/3x+4/9
a) Ta có : \(f\left(x\right)=x^2-10x+27=\left(x^2-10+25\right)+2=\left(x-5\right)^2+2\ge2>0\)
Vậy f(x) > 0 => Vô nghiệm.
b) Tương tự : \(g\left(x\right)=x^2+\frac{2}{3}x+\frac{4}{9}=\left(x^2+2.x.\frac{1}{3}+\frac{1}{9}\right)+\frac{4}{9}-\frac{1}{9}=\left(x+\frac{1}{3}\right)^2+\frac{1}{3}\ge\frac{1}{3}>0\)
Vậy g(x) > 0 => Vô nghiệm.
Cho đa thức f(x) có các hệ số nguyên. Biết f(1).f(2)=2013. Chứng minh rằng đa thức f(x) không có nghiệm nguyên
Giả sử f(x) có nghiệm nguyên là a, Khi đó f(x)=(x−a)Q(x)
Thay x =1;2 vào biểu thức trên ta được : f(1)=(1−a)Q(1) và f(2)=(2−a)Q(2)
=> f(1).f(2)=(a−1)(a−2)Q(1).Q(2)
Hay 2013=(a−1)(a−2).Q(1)Q(2)
Ta có VT không chia hết cho 2, VP chia hết cho 2 ( vì (a−1)(a−2) chia hết cho 2 )
=> PT vô nghiệm
=> f(x) không có nghiệm nguyên
x4-10x3+2x2+1 chứng minh đa thức sau không có nghiệm
Chứng minh rằng đa thức f(x)=x^2–2x+ 2016 không có nghiệm
Để phương trình có nghiệm thì f(x)=0
⇔x2-2x+2016=0
⇔ (x-1)2+2015=0
⇔ (x-1)2=-2015 (vô lí do (x-1)2≥0)
Vậy,phương trình vô nghiệm
F(x)=x2−2x+2016F(x)
F(x)=x2−2x+1+2015
F(x)=x2−x−x+1+2015
=x(x−1)−(x−1)+2015
=(x−1)^2+2015
Vì (x−1)2+2015≥2015>0 với mọi x ∈ R
=>F(x) vô nghiệm (đpcm)
chứng minh đa thức không có nghiệm : f(x)=x+3x+4
cho f(x) là đa thức có hệ số nguyên.Biết f(0) và f(1) là các số lẻ, chứng minh rằng đa thức f(x) không có nghiệm nguyên
Câu hỏi của Lê Minh Đức - Toán lớp 9 - Học toán với OnlineMath
Em có thể tham khảo bài tương tự tại đây nhé.