cho m=4x^2+x^2y^2+2y^4+20y^2. Tính giá trị của M khi x^2+y^2=10
B=4x^2+6x^2y^2+2y^4+20y^2 Tính giá trị B khi x^2+y^2=10
\(B=4x^2+6x^2y^2+2y^4+20y^2\)
\(=4x^2+4x^2y^2+2x^2y^2+2y^4+20y^2\)
\(=4x^2.\left(x^2+y^2\right)+2y^2.\left(x^2+y^2\right)+20y^2\)
\(=\left(x^2+y^2\right).\left(4x^2+2y^2\right)+20y^2\)
Bí >>>
cho phân thức M=xy^2+y^2(y^2-x)+1/x^2y^4+2y^4+x^2+2
a) Rút gọn rồi tính giá trị của M khi x=-3
b) chuwmgs minh M luôn luôn dương với mọi giá trị x
a, \(M=\frac{xy^2+y^2\left(y^2-x\right)+1}{x^2y^4+2y^4+x^2+2}=\frac{y^2\left(x+y^2-x\right)+1}{y^4\left(x^2+2\right)+\left(x^2+2\right)}=\frac{y^4+1}{\left(y^4+1\right)\left(x^2+2\right)}=\frac{1}{x^2+2}\)
Thay x=-3 vào M
=>\(M=\frac{1}{\left(-3\right)^2+2}=\frac{1}{11}\)
b, Vì \(x^2\ge0\Rightarrow x^2+2\ge2\Rightarrow M=\frac{1}{x^2+2}>0\)
cho m=4x^4+6x^2.y^2+2y^4+20y^2 tinh gia tri m khi x^2+y^2
A=4x^4+6x^2y^2+2x^2+20y^2
Tính A khi x^2+y^2=10
Tính M=4x4+6x2y2+2y4+20y2 biết x2+y2=10
Lời giải:
$M=4x^2(x^2+y^2)+2y^2(x^2+y^2)+20y^2$
$=4x^2.10+2y^2.10+20y^2$
$=40x^2+20y^2+20y^2=40x^2+40y^2=40(x^2+y^2)=40.10=400$
Cho biểu thức N = \(3x^4+4x^2y^2+y^4+2y^2\) với \(x^2+y^2=1\) . Tính giá trị của biểu thức N.
\(N=3x^4+3x^2y^2+x^2y^2+y^4+2y^2\)
\(=\left(x^2+y^2\right)\left(3x^2+y^2\right)+2y^2\)
\(=3x^2+3y^2=3\)
cho đa thức M=2x^2y-xy^2+3x-2y và N=2xy^2-2x^2y-5x+2y
a) tính A=M+N,B=N-M
b) tính giá trị của đa thức B khi x=2 và y^2=16
a ) A = M + N = ( 2x2y - xy2 + 3x - 2y ) + ( 2xy2 - 2x2y - 5x + 2y )
= 2x2y - xy2 + 3x - 2y + 2xy2 - 2x2y - 5x + 2y
= ( 2x2y - 2x2y ) + ( -xy2 + 2xy2 ) + ( 3x - 5x ) + ( - 2y + 2y )
= 0 + ( -1 +2 ) xy2 + ( 3 - 5 )x + 0
= xy2 - 2x
Vậy A = M + N = xy2 - 2x
B = N - M = 2xy2 - 2x2y - 5x + 2y - ( 2x2y - xy2 + 3x - 2y )
= 2xy2 - 2x2y - 5x + 2y - 2x2y + xy2 - 3x + 2y
= ( 2xy2 + xy2 ) + ( -2x2y - 2x2y ) + ( - 5x - 3x ) + ( 2y + 2y )
= ( 2 + 1 )xy2 + ( -2 - 2 )x2y + ( - 5 - 3 )x + ( 2 + 2 )y
= 3xy2 - 4x2y - 8x + 4y
Vậy B = 3xy2 - 4x2y - 8x + 4y
Tìm các số x và y thỏa mãn : x^2y^2-2xy^2+8xy-12x-4x^2y+6x^2+5y^2-20y+22=0
Cho biểu thức B= (\(\dfrac{x-y}{2y-x}\)-\(\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\)) : \(\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
a) Với giá trị nào của x,y thì BT được xác định
b) Rút gọn BT
a) ĐKXĐ: \(x\ne2y,x\ne-y;x\ne-1\)
b) \(B=\left(\dfrac{x-y}{2y-x}-\dfrac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
\(B=\left[\dfrac{y-x}{x-2y}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{4x^4+4x^2y+y^2-4}{x\left(x+y\right)+\left(x+y\right)}\)
\(B=\left[\dfrac{\left(y-x\right)\left(x+y\right)}{\left(x-2y\right)\left(x+y\right)}-\dfrac{x^2+y^2+y-2}{\left(x+y\right)\left(x-2y\right)}\right]:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)
\(B=\dfrac{y^2-x^2-x^2-y^2-y+2}{\left(x+y\right)\left(x-2y\right)}:\dfrac{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}{\left(x+1\right)\left(x+y\right)}\)
\(B=\dfrac{-2x^2-y+2}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)
\(B=\dfrac{-\left(2x^2+y-2\right)}{\left(x+y\right)\left(x-2y\right)}\cdot\dfrac{\left(x+1\right)\left(x+y\right)}{\left(2x^2+y+2\right)\left(2x^2+y-2\right)}\)
\(B=\dfrac{-\left(x+1\right)}{\left(x-2y\right)\left(2x^2+y+2\right)}\)