Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
diem pham
Xem chi tiết
Chung Vũ
Xem chi tiết
Trần Tuấn Hoàng
10 tháng 4 2023 lúc 20:47

\(x^2-2mx-3=0\left(1\right)\)

\(a=1;b=-2m;c=-3\)

Ta có a và c trái dấu nên ac<0 \(\Rightarrow\Delta>0\)

Do đó phuong trình (1) luôn có 2 nghiệm phân biệt với mọi m.

Theo định lí Viete cho phương trình (1) ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2m\right)}{1}=2m\\x_1x_2=\dfrac{c}{a}=\dfrac{-3}{1}=-3\end{matrix}\right.\)

Ta có: \(\left(x_1-2x_2\right)^2+x_2-2mx_1=20\)

\(\Rightarrow x_1^2-4x_1x_2+4x_2^2+x_2-2mx_1=20\)

\(\Rightarrow x_1^2-4x_1x_2+4x_2^2+x_2-\left(x_1+x_2\right)x_1=20\)

\(\Rightarrow-5x_1x_2+4x_2^2+x_2=20\)

\(\Rightarrow-5.\left(-3\right)+4x_2^2+x_2=20\)

\(\Leftrightarrow4x_2^2+x_2-5=0\)

Giải phương trình trên ta được: \(\left[{}\begin{matrix}x_2=1\\x_2=-\dfrac{5}{4}\end{matrix}\right.\)

Với x2=1 là nghiệm của phương trình (1). Ta có:

\(1^2-2m.1-3=0\Rightarrow m=-1\)

Với x2=-5/4 là nghiệm của phương trình (1). Ta có:

\(\left(-\dfrac{5}{4}\right)^2-2m.\left(-\dfrac{5}{4}\right)-3=0\Rightarrow m=\dfrac{23}{40}\)

Vậy m=-1 hay m=23/40

Tuyến Ngô
10 tháng 4 2023 lúc 20:24

pt và ng là j vậy bn

Hàng Tô Kiều Trang
10 tháng 4 2023 lúc 20:29

banj gõ latex phần sau chữ thỏa mãn nhé, không nhìn được=)))))))))))

Công
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 2 2022 lúc 13:19

a: \(\Delta=\left(-5\right)^2-4\cdot1\cdot\left(m-2\right)=25-4m+8=-4m+33\)

Để phương trình có nghiệm thì -4m+33>=0

=>-4m>=-33

hay m<=33/4

Theo đề, ta có: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{5}{3}\\x_1=\dfrac{10}{3}\end{matrix}\right.\)

Ta có: \(x_1x_2=m-2\)

=>m-2=50/9

hay m=68/9

b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=6\)

\(\Leftrightarrow5^2-2\left(m-2\right)=6\)

=>25-2(m-2)=6

=>2(m-2)=19

=>m-2=19/2

hay m=23/2

d: \(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=14\)

\(\Leftrightarrow25-4\left(m-2\right)=196\)

=>4(m-2)=-171

=>m-1=-171/4

hay m=-163/4

Phạm Tuân
Xem chi tiết
Su Su
Xem chi tiết
Lê Thị Thục Hiền
28 tháng 5 2021 lúc 22:25

Xét \(\Delta=4\left(m-1\right)^2-4.\left(-3\right)=4\left(m-1\right)^2+12>0\forall m\)

=>Pt luôn có hai nghiệm pb

Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=-3\ne0\forall m\end{matrix}\right.\)

Có \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\)

\(\Leftrightarrow x_1^3+x_2^3=\left(m-1\right)x_1^2.x_2^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(m-1\right).\left(-3\right)^2\)

\(\Leftrightarrow8\left(m-1\right)^3-3\left(-3\right).2\left(m-1\right)=9\left(m-1\right)\)

\(\Leftrightarrow8\left(m-1\right)^3+9\left(m-1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left[8\left(m-1\right)^2+9\right]=0\)

\(\Leftrightarrow m=1\)(do \(8\left(m-1\right)^2+9>0\) với mọi m)

Vậy m=1

𝓓𝓾𝔂 𝓐𝓷𝓱
28 tháng 5 2021 lúc 22:29

Vì \(ac< 0\) \(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-3\end{matrix}\right.\)

Mặt khác: \(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\) \(\Rightarrow\dfrac{\left(x_1+x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)}{x_1^2x_2^2}=m-1\)

  \(\Leftrightarrow\dfrac{\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]}{x_1^2x_2^2}=m-1\)

  \(\Rightarrow\dfrac{\left(2m-2\right)\left(4m^2-8m+13\right)}{9}=m-1\)

  \(\Leftrightarrow...\)  

 

Maneki Neko
Xem chi tiết
Ly Hương
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 20:07

a: a*c=-m^2-3<=-3<0 với mọi m

=>Phương trình luôn có hai nghiệm phân biệt

b: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=3\)

=>\(\dfrac{x_2+x_1}{x_2x_1}=3\)

=>\(\dfrac{-2}{-m^2-3}=3\)

=>\(\dfrac{2}{m^2+3}=3\)

=>m^2+3=2/3

=>m^2=2/3-3=-7/3(vô lý)

Limited Edition
Xem chi tiết
Lê Thị Thục Hiền
23 tháng 5 2021 lúc 9:01

\(\Delta=4\left(m+1\right)^2-4\left(2m-3\right)=4m^2+16>0\forall m\)

=> pt luôn có hai nghiệm pb

Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-3\end{matrix}\right.\)

Có :\(P^2=\left(\dfrac{x_1+x_2}{x_1-x_2}\right)^2=\dfrac{4\left(m+1\right)^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\dfrac{4\left(m+1\right)^2}{4\left(m+1\right)^2-4\left(2m-3\right)}=\dfrac{4\left(m+1\right)^2}{4m^2+16}\)\(\ge0\)

\(\Rightarrow P\ge0\)

Dấu = xảy ra khi m=-1

Đinh Vũ Vân Anh
Xem chi tiết