Chứng tỏ đa thức M(x)=x2 - 6x + 10 không có nghiệm
Cho đa thức P(x)= x2 - 6x + 12. Chứng tỏ rằng đa thức trên không có nghiệm
\(x^2-6x+12\)
\(=x^2-3x-3x+9+3\)
\(=\left(x^2-3x\right)+\left(-3x+9\right)+3\)
\(=x\left(x-3\right)-3\left(x-3\right)+3\)
\(=\left(x-3\right)\left(x-3\right)+3\)
\(=\left(x-3\right)^2+3\)
Ta có: \(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+3>0\)
Vậy \(P\left(x\right)=x^2-6x+12\) không có nghiệm
Cho đa thức P x x2 6x 12. Chứng tỏ rằng đa thức trên không có nghiệm
Chứng tỏ đa thức không có nghiệm
\(4x^2+8x+10\)
\(x^2+4x+6\)
\(4x^{2010}+6x^{2012}+2021\)
Cho đa thức P(x) = x2 - 6x + 12. Chứng tỏ rằng đa thức trên không có nghiệm.
hlep
Cho `P(x) = 0`
`=> x^2 - 6x + 12 = 0`
`=> x^2 - 2x . 3 + 3^2 + 3 = 0`
`=> ( x + 3 )^2 = -3` (Vô lí vì `( x + 3 )^2 >= 0` mà `-3 < 0`)
Vậy đa thức `P(x)` không có nghiệm
Cho P(x)=0P(x)=0
⇒x2−6x+12=0⇒x2-6x+12=0
⇒x2−2x.3+32+3=0⇒x2-2x.3+32+3=0
⇒(x+3)2=−3⇒(x+3)2=-3 (Vô lí vì (x+3)2≥0(x+3)2≥0 mà −3<0-3<0)
Vậy đa thức P(x)P(x) không có nghiệm. Chúc bạn học tốt
Chứng tỏ đa thức f(x)=x2-x+1 không có nghiệm.
Ta có:
x2-x+1=x2-\(\dfrac{1}{2}x+\dfrac{1}{2}x\)+\(\dfrac{1}{4}+\dfrac{3}{4}\)
=\(x\left(x-\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\left(x-\dfrac{1}{2}\right)+\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\dfrac{3}{4}\)
Vậy f(x)≥\(\dfrac{3}{4}\)∀ x
=>f(x) vô nghiệm
\(x^2-x+1=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có: \(\left(x+\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Rightarrow\)Đa thức vô nghiệm
\(x^2-x+1\)
= \(x^2-0,5\cdot x-0,5\cdot x+1\)
= \(x\left(x-0,5\right)-0,5\left(x-0,5\right)+0,75\)
=\(\left(x-0,5\right)^2+0,75\)
vì (x-0,5)^2 \(\ge\) 0 với mọi x
=> \(\left(x-0,5\right)^2+0,75>0\)
=> f vô nghiệm
Chứng tỏ đa thức x^2-6x+20 không có nghiệm
Ta có: x2 - 6x + 20 = x2 - 3x - 3x + 9 + 11
= x(x - 3) - 3(x - 3) +11
= (x - 3)(x - 3) +11
= (x - 3)2 + 11
Mà \(\left(x-3\right)^2\ge0\forall x\)\(\Rightarrow\left(x-3\right)^2+11\ge11\)
=> x2 - 6x +20 vô nghiệm (đpcm)
\(x^2-6x+20=x^2-3x-3x+9+11=x\left(x-3\right)-\left(3x-9\right)+11=x\left(x-3\right)-3\left(x-3\right)+11=\left(x-3\right)\left(x-3\right)+11=\left(x-3\right)^2+11>0\)
Vậy với mọi x thì đa thức đó không có nghiệm
Chứng tỏ đa thức x2 + x +3/4 không có nghiệm
A(\(x\)) = \(x^2\) + \(x\) + \(\dfrac{3}{4}\)
A(\(x\)) = (\(x^2\) + 2\(x\).\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\)) + \(\dfrac{2}{4}\)
A(\(x\)) = (\(x\) + \(\dfrac{1}{2}\))2 + \(\dfrac{2}{4}\)
Vì (\(x+\dfrac{1}{2}\))2 ≥ 0 ⇒ (\(x\) + \(\dfrac{1}{2}\))2 + \(\dfrac{2}{4}\) ≥ \(\dfrac{2}{4}\)
⇒ \(x^2\) + \(x\) + \(\dfrac{3}{4}\) > 0 ∀ \(x\)
Vậy A(\(x\)) = 0 vô nghiệm (đpcm)
`@` `\text {Ans}`
`\downarrow`
Ta có: \(x^2\ge0\text{ }\forall\text{ x}\)
`->`\(x^2+x+\dfrac{3}{4}\ge\dfrac{3}{4}>0\text{ }\forall\text{ x}\)
Mà `3/4 \ne 0`
`->` Đa thức vô nghiệm.
Xét `f(x)=(x^2+x+3)/4`
Ta có `x^2+x+3=(x^2+x+1/4)+11/4=(x+1/2)^2+11/4>0AAx`
`=>f(x)>0` hay `f(x)` vô nghiệm
chứng tỏ đa thức p(x)= -3x^2+6x+5 không có nghiệm
chứng tỏ đa thức p(x)= -3x^2+6x+5 không có nghiệm
Có: \(-3x^2+6x+5=x^2-2x+\frac{5}{-3}=0\)
\(=x.x-x-x+\frac{5}{-3}=0\)
\(=x\left(x-1\right)-1\left(x-1\right)-1+\frac{5}{-3}=0\)
\(=\left(x-1\right).\left(x-1\right)-\frac{8}{-3}=0\)
\(=\left(x-1\right)^2+\frac{8}{3}=0\)
\(\Rightarrow\left(x-1\right)^2=-\frac{8}{3}\)(vô lí) Vì số nguyên nào lũy thừa chẵn cũng là một số không âm)
\(\Rightarrow\)Đa thức trên không có nghiệm