Các giá trị của tham số m để phương trình 2x2+(m-1)x-m-1=0 có hai nghiệm phân biêt x1;x2 thỏa mãn x1≤1<x2 là
A.m>-1 B.m<-1 C.m>-3 D.m<-3
tìm các giá trị của tham số m để phương trình x2-2(m-1)x+m2=0 có hai nghiệm phân biệt x1,x2 thỏa mãn hệ thức (x1-x2)2+6m = x1-2x2
Cho phương trình x2 - 2(m + 1) + m2 + 1 = 0, với m là tham số. Tìm các giá trị của m để phương trình có 2 nghiệm phân biệt x1, x2 (x1<x2) thoả mãn :
(2x2 - 3)2 - (2x2 - 3)2 = 32m - 16
Tìm các giá trị của tham số m để phương trình 2 x 2 − 2 x + 1 − m = 0 có hai nghiệm phân biệt
A. m > 1 2
B. m = 1 2
C. m < 1 2
D. Không tồn tại
Bài 3 (2,5 điểm)
Cho phương trình -x+(2m - 1)x + m – m^2 =0 (1) (với m là tham số).
a) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt. Tìm hai nghiệm đó khi m = 2.
b) Tìm tất cả các giá trị của m sao cho x1 (1-2x2)+x2(1-2x1)= mo, với x1 và x2, là hai nghiệm của phương trình (1).
c) Với X1 và X2 là hai nghiệm của phương trình (1), chứng minh rằng với mọi giá trị của m ta luôn có x1 - 2x1x2 + x2 < hoặc =1
Mong các bạn giúp mik!
a: Δ=(2m-1)^2-4*(-1)(m-m^2)
=4m^2-4m+1+4m-4m^2=1>0
=>(1) luôn có hai nghiệm phân biệt
b: m=x1-2x1x2+x2-2x1x2
=x1+x2-4x1x2
=2m-1+4(m-m^2)
=>m-2m+1-4m+4m^2=0
=>4m^2-5m+1=0
=>m=1 hoặc m=1/4
c: x1+x2-2x1x2
=2m-1+2m-2m^2=-2m^2+4m-1
=-2m^2+4m-2+1
=-2(m-1)^2+1<=1
Cho phương trình : 2 x 2 − 2 m x + m 2 − 2 = 0 1 , với m là tham số.
a) Giải phương trình (1) khi m= 2.
b) Tìm các giá trị của m để phương trình (1) có hai nghiệm x 1 , x 2 sao cho biểu thức A = 2 x 1 x 2 − x 1 − x 2 − 4 đạt giá trị lớn nhất.
a, Với m= 2, ta có 2 x 2 − 4 x + 2 = 0 ⇔ x = 1
b) Phương trình (1) có hai nghiệm x 1 , x 2 khi và chỉ khi Δ ' ≥ 0 ⇔ − 2 ≤ m ≤ 2
Theo Vi-et , ta có: x 1 + x 2 = m 1 x 1 . x 2 = m 2 − 2 2 2
Theo đề bài ta có: A = 2 x 1 x 2 − x 1 − x 2 − 4 = m 2 − 2 − m − 4 = m − 3 m + 2
Do − 2 ≤ m ≤ 2 nên m + 2 ≥ 0 , m − 3 ≤ 0 . Suy ra A = m + 2 − m + 3 = − m 2 + m + 6 = − m − 1 2 2 + 25 4 ≤ 25 4
Vậy MaxA = 25 4 khi m = 1 2 .
Cho phương trình x ²-(2m-1)x+m(m-1) (với m là tham số). a) Giải phương trình khi m=1 b) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt c) Với X1, X2, là hai nghiệm của phương trình, tìm tất cả các giá trị của m sao cho 3x1 + 2x2=1.
a: Thay m=1 vào pt, ta được:
\(x^2-x=0\)
=>x(x-1)=0
=>x=0 hoặc x=1
b: \(\Delta=\left(2m-1\right)^2-4m\left(m-1\right)\)
\(=4m^2-4m+1-4m^2+4m=1>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
cho phương trình x^2-mx+m-1=0(m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm phân biệt x1,x2 và thỏa mãn x1^2+x2^2=x1+x2
\(\Delta=\left(-m\right)^2-2.1.\left(m-1\right)\\ =m^2-2m+1\\ =\left(m-1\right)^2\)
Phương trình có hai nghiệm phân biệt :
\(\Leftrightarrow\Delta>0\\ \Rightarrow\left(m-1\right)^2>0\\ \Rightarrow m\ne1\)
Theo vi ét :
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(x^2_1+x^2_2=x_1+x_2\\ \Leftrightarrow x^2_1+x^2_2=m\\ \Leftrightarrow\left(x^2_1+2x_1x_2+x_2^2\right)-2x_1x_2=m\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-m=0\\ \Leftrightarrow m^2-2\left(m-1\right)-m=0\\ \Leftrightarrow m^2-2m+2-m=0\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=2\left(t/m\right)\end{matrix}\right.\)
Vậy \(m=2\)
Cho phương trình x2+ 2(m − 1)x − 6m − 7 = 0 (1) (m là tham số).
a) Chứng minh rằng với mọi giá trị của m thì phương trình (1) luôn có hai nghiệm phân biệt.
b) Gọi x1, x2là hai nghiệm của phương trình (1). Tìm các giá trị của m thỏa x1(x1+3/3x2)+x2(x2+3/2x1)=15
các bạn ai biết thì chỉ giúp mình với ạ
\(x^{2^{ }}+2\left(m-1\right)x-6m-7=0\left(1\right)\)
a) \(Dental=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-6m-7\right)\)
\(< =>4\cdot\left(m^2-2m+1\right)+24m+28\)
\(< =>4m^2-8m+4+24m+28\)
\(< =>4m^2+16m+32\)
\(< =>\left(2m+4\right)^2+16>0\) với mọi m
Vậy phương (1) luôn có 2 nghiệm phân biệt với mọi m
b) Theo định lí vi ét ta có:
x1+x2= \(\dfrac{-2\left(m-1\right)}{1}=-2m+1\)
x1x2= \(-6m-7\)
quy đồng
khử mẫu
tách sao cho có tích và tổng
thay x1x2 x1+x2
kết luận
mặt xấu vl . . .
cho phương trình:x^2+mx-2=0(m là tham số).Tìm tất cả các giá trị m để phương trình có hai nghiệm phân biệt x1:x2 thỏa mãn:x1^2x2+x1x2^2=2021
Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)
\(\Rightarrow m^2-4.1.\left(-2\right)>0\\ \Rightarrow m^2+8>0\left(luôn.đúng\right)\)
Vậy pt luôn có 2 nghiệm phân biệt
Áp dụng định lý Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-2\end{matrix}\right.\)
\(x^2_1x_2+x_1x^2_2=2021\\ \Leftrightarrow x_1x_2\left(x_1+x_2\right)=2021\\ \Leftrightarrow\left(-m\right)\left(-2\right)=2021\\ \Leftrightarrow2m=2021\\ \Leftrightarrow m=\dfrac{2021}{2}\)
Để pt có 2 nghiệm thì
\(\Delta>0\\ \Rightarrow m^2-4.1.\left(-2\right)>0\\ \Rightarrow m^2+8>0.đúng.\forall.m\)
Vậy pt luôn có 2 nghiệm phân biệt
Áp dụng đlí Viét ta có
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=-m\\x_1x_2=\dfrac{c}{a}=-2\end{matrix}\right.\)
Lại có
\(x_1x_2+x_1x_2=2021\\ \Rightarrow x_1x_2\left(x_1+x_2\right)< 2021\\ \Rightarrow-2\left(-m\right)=2021\Rightarrow2m=2021\\ \Rightarrow m=\dfrac{2021}{2}\)