cho a^2 + b^2 < 2 . Chứng minh a+b<2
Cho (a+b)^2 = 2(a^2+b^2). chứng minh a = b
\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b^2-2a^2-2b^2=0\)
\(\Leftrightarrow-a^2+2ab-b^2=0\)
\(\Leftrightarrow-\left(a^2-2ab+b^2\right)=0\)
\(\Leftrightarrow-\left(a-b\right)^2=0\)
\(\Leftrightarrow a-b=0\Leftrightarrow a=b\)
Giải:
Ta có: \(\left(a+b\right)^2=2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)
\(\Leftrightarrow2ab=2a^2-a^2+2b^2-b^2\)
\(\Leftrightarrow2ab=a^2+b^2\)
\(\Leftrightarrow a^2+b^2-2ab=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\)
\(\Leftrightarrow a-b=0\)
\(\Leftrightarrow a=b\) (đpcm)
Vậy ...
\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)
\(\Leftrightarrow a^2-2a^2+2ab+b^2-2b^2=0\)
\(\Leftrightarrow-a^2+2ab-b^2=0\)
\(\Leftrightarrow\left[-\left(a-b\right)\right]^2=0\)
\(\Leftrightarrow a-b=0\)
\(\Leftrightarrow a=b\)
\(\Rightarrow\) ĐPCM
cho (a+b+c)^2=3(a^2+b^2+c^2) .Chứng minh a=b=c
\(\left(a+b+c\right)^2=3\left(a^2+b^2+c ^2\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2=0\)
\(\Leftrightarrow-2a^2-2b^2-2c^2+2ab+2ac+2bc=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\)
\(\Leftrightarrow a=b=c\)
Cho b^2=ac. Chứng minh rằng : a^2+b^2/b^2+c^2=a/c.?
( a^2 + b^2) / (b^2 + c^2)=(a^2+ac )/ (c^2+ac) = a(a+c)/c(a+c) = a/c
Cho (a+b)2 = 2(a2+b2). Chứng minh rằng: a=b
\(\left(a+b\right)^2=2\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+2ab+b^2=2a^2+2b^2\)
\(\Leftrightarrow a^2-2ab+b^2=0\)
\(\Leftrightarrow\left(a-b\right)^2=0\)
\(\Leftrightarrow a-b=0\)
\(\Leftrightarrow a=b\left(đpcm\right)\)
Vậy...
Cho các số thực a,b,c thỏa mãn
\(a^2+b^2+c^2=2\). Chứng minh rằng:
a + b + c ≤ 2 + abc
1,Cho a>=-1, n thuộc N*. Chứng minh (1+a)n>= 1+an
2, Cho n thuộc N, a+b> 0. Chứng minh (a+b)n/2=<(an+bn)/2
Ai giúp mình với, cảm ơn trước nhé!
Cho a^2+ b^2 + c^2=ab+ ac + bc
Chứng minh a=b=c
Ta có: \(a^2+b^2+c^2=ab+ac+bc\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+ac+bc\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(a-c\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\Leftrightarrow a=b=c\)
=> đpcm.
\(a^2+b^2+c^2=ab+ac+bc\Rightarrow2a^2+2b^2+2c^2=2ab+2ac+2bc\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
Mà \(\left(a-b\right)^2\ge0;\left(a-c\right)^2\ge0;\left(b-c\right)^2\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\Rightarrow a=b=c\)
Vậy a=b=c
Cho đa thức A(x)=ax2+bx+c
a) Chứng tỏ A(2).A(-1)<0 , biết 5a+b+2c=0
b) Cho A(x)=0 với mọi x . Chứng minh a=b=c=0
a)Mình nghĩ là chứng minh \(A\left(2\right).A\left(-1\right)\le0\)mới đúng chớ! Mình làm theo đề đã sửa nhé!
Ta có: \(A\left(2\right)=4a+2b+c\)
\(A\left(-1\right)=a-b+c\)
Suy ra \(A\left(2\right)+A\left(-1\right)=5a+b+2c=0\)
Suy ra \(A\left(2\right)=-A\left(-1\right)\)
Thay vào,ta có: \(A\left(2\right).A\left(-1\right)=-\left[A\left(-1\right)\right]^2\le0\) (đúng)
b)Theo đề bài A(x) = 0 với mọi x nên:
\(A\left(1\right)=a+b+c=0\Rightarrow a=-b-c\) (1)
\(A\left(-1\right)=a-b+c=0\Rightarrow b=a+c\) (2)
Cộng (1) và (2) lại,ta được: \(a+b=a-b\Leftrightarrow2b=0\Leftrightarrow b=0\) (*)
Khi đó \(A\left(x\right)=ax^2+c=0\forall x\)
\(\Rightarrow A\left(1\right)=a+c=0\Rightarrow a=-c\) (3)
\(A\left(2\right)=4a+c=0\Leftrightarrow-4a=c\) (4)
Cộng theo vế (3) và (4) suy ra \(-3a=0\Leftrightarrow a=0\) (**)
Thay a = b = 0 vào,ta có: \(A\left(x\right)=c=0\forall x\)(***)
Từ (*);(**) và (***) ta có a = b =c = 0 (đpcm)
Đúng ko ta?
bài 1: Cho các số thực a, b, c thỏa mãn a+b−2c=0 và a2+b2−ca−cb=0.Chứng minh rằng a = b = c.
bài 2: Giả sử a, b là hai số thực phân biệt thỏa mãn a2+4a=b2+4b=1.
a) Chứng minh rằng a + b = −4.
b) Chứng minh rằng a3 + b3 = −76.
c) Chứng minh rằng a4 + b4 = 322.
Bài 1:
Ta có: a + b - 2c = 0
⇒ a = 2c − b thay vào a2 + b2 + ab - 3c2 = 0 ta có:
(2c − b)2 + b2 + (2c − b).b − 3c2 = 0
⇔ 4c2 − 4bc + b2 + b2 + 2bc − b2 − 3c2 = 0
⇔ b2 − 2bc + c2 = 0
⇔ (b − c)2 = 0
⇔ b − c = 0
⇔ b = c
⇒ a + c − 2c = 0
⇔ a − c = 0
⇔ a = c
⇒ a = b = c
Vậy a = b = c