Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngọc Hưng
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
26 tháng 9 2023 lúc 23:40

a) \({\left( {3x + y} \right)^4} = {\left( {3x} \right)^4} + 4.{\left( {3x} \right)^3}y + 6.{\left( {3x} \right)^2}{y^2} + 4.\left( {3x} \right){y^3} + {y^4}\)

\( = 81{x^4} + 108{x^3}y + 54{x^2}{y^2} + 12x{y^3} + {y^4}\)

b) \(\begin{array}{l}{\left( {x - \sqrt 2 } \right)^5} = \left( {x + (-\sqrt 2) } \right)^5 ={x^5} + 5.{x^4}.\left( { - \sqrt 2 } \right) + 10.{x^3}.{\left( { - \sqrt 2 } \right)^2} + 10.{x^2}.{\left( { - \sqrt 2 } \right)^3} + 5.x.{\left( { - \sqrt 2 } \right)^4} + 1.{\left( { - \sqrt 2 } \right)^5}\\ = {x^5} - 5\sqrt 2 .{x^4} + 20{x^3} - 20\sqrt 2 .{x^2} + 20x - 4\sqrt 2 \end{array}\)

Tuấn Nguyễn
Xem chi tiết
⭐Hannie⭐
5 tháng 3 2023 lúc 22:57

loading...  

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2022 lúc 16:25

Xét khai triển:

\(\left(1+x\right)^n=C_n^0+C_n^1x+C_n^2x^2+...+C_n^nx^n\)

\(\Leftrightarrow x\left(1+x\right)^n=C_n^0x+C_n^1x^2+C_n^2x^3+...+C_n^nx^{n+1}\)

Đạo hàm 2 vế:

\(\left(1+x\right)^n+nx\left(1+x\right)^{n-1}=C_n^0+2C_n^1x+3C_n^2x^2+...+\left(n+1\right)C_n^nx^n\)

Thay \(x=1\)

\(\Rightarrow2^n+n.2^{n-1}=1+2C_n^1+3C_n^2+...+\left(n+1\right)C_n^n\)

\(\Rightarrow2^{n-1}\left(2+n\right)-1=111\)

\(\Rightarrow2^{n-1}\left(2+n\right)=112=2^4.7\)

\(\Rightarrow n=5\)

\(\left(x^2+\dfrac{2}{x}\right)^5=\sum\limits^5_{k=0}C_5^kx^{2k}.2^{5-k}.x^{k-5}=\sum\limits^5_{k=0}C_5^k.2^{5-k}.x^{3k-5}\)

\(3k-5=4\Rightarrow k=3\Rightarrow\) hệ số: \(C_5^3.2^2\)

Jjjj Li
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 4 2023 lúc 14:43

SHTQ là: \(C^k_4\cdot\left(x^3\right)^{4-k}\cdot\left(\dfrac{1}{x}\right)^k=C^k_4\cdot x^{12-4k}\)

Số hạng ko chứa x tương ứng với 12-4k=0

=>k=3

=>SH đó là \(C^3_4=4\)

trinh trần
Xem chi tiết
Mysterious Person
19 tháng 8 2018 lúc 20:18

ta có : \(\left(\dfrac{x}{3}-\dfrac{3}{x}\right)^{12}=\sum\limits^{12}_{k=0}C^k_{12}\left(\dfrac{x}{3}\right)^{12-k}.\left(-1\right)^k\left(\dfrac{3}{x}\right)^k\)

\(=\sum\limits^{12}_{k=0}C^k_{12}\left(-1\right)^k\dfrac{\left(x\right)^{12-2k}}{3^{12-2k}}\)

\(\Rightarrow\) để có số hạng chứa \(x^4\) thì \(12-2k=4\Leftrightarrow k=4\)

\(\Rightarrow\) hệ số của số hạng chứa \(x^4\) là : \(\dfrac{C^4_{12}\left(-1\right)^4}{3^4}=\dfrac{55}{9}\)

vậy ............................................................................................................

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
1 tháng 10 2023 lúc 21:01

Ta có:

\({(2 + 3x)^4} = C_4^0{2^4} + C_4^1{2^3}3x + C_4^2{2^2}{\left( {3x} \right)^2} + C_4^32.{\left( {3x} \right)^3} + C_4^4{\left( {3x} \right)^4}\)

=> Hệ số của của \({x^2}\)là \(C_4^2{.2^2}{.3^2} = 36C_4^2.\)

Chọn D.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 7 2019 lúc 4:02

Đáp án C

 

Ta có P ( x ) = 1 + 2 x 12 = ∑ k = 0 12 C 12 k 1 12 - k = ∑ k = 0 12 C 12 k 2 k x k .

Gọi a k = C 12 K 2 K , 0 ≤ k ≤ 12 , k ∈ ℕ  là hệ số lớn nhất trong khai triển.

Suy ra a k ≥ a k + 1 a k ≥ a k - 1 ⇔ c 12 k 2 k ≥ c 12 k + 1 2 k + 1 c 12 k 2 k ≥ c 12 k - 1 2 k - 1  

⇔ 12 ! 12 - k ! k ! . 2 k ≥ 12 ! 11 - k ! k + 1 ! . 2 k + 1 12 ! 12 - k ! k ! . 2 k ≥ 12 ! 13 - k ! k + 1 ! . 2 k - 1 ⇔ 1 12 - k ≥ 2 k + 1 1 k ≥ 1 2 13 - k

Vậy hệ số lớn nhất trong khai triển đã cho là a 8 = 2 8 c 12 8 = 126720 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 10 2017 lúc 11:43