SHTQ là: \(C^k_4\cdot\left(x^3\right)^{4-k}\cdot\left(\dfrac{1}{x}\right)^k=C^k_4\cdot x^{12-4k}\)
Số hạng ko chứa x tương ứng với 12-4k=0
=>k=3
=>SH đó là \(C^3_4=4\)
SHTQ là: \(C^k_4\cdot\left(x^3\right)^{4-k}\cdot\left(\dfrac{1}{x}\right)^k=C^k_4\cdot x^{12-4k}\)
Số hạng ko chứa x tương ứng với 12-4k=0
=>k=3
=>SH đó là \(C^3_4=4\)
Tìm hệ số của số hạng chứa x trong khai triển (2+3x) mũ 5 ( sử dụng công thức tổng quát Nhị Thức Newton)
Câu 2. (2 điểm) Cho biểu thức $Q=(x y-1)^5$.
a) Viết khai triển biểu thức $Q$ bằng nhị thức Newton.
b) Tìm số hạng có chứa $x^2 y^2$ trong khai triển trên.
Câu 2. Cho biểu thức Q= (xy - 1) ^ prime .a) Viết khai triển biểu thức 2 bằng nhị thức Newton.b) Tìm số hạng có chứa x ^ 2 * y ^ 2 trong khai triển trên.
a)Tìm số hạng không chứa x trong khai triển (x+2/x)10
b)Tìm số hạng không chứa x trong khai triển (x+2/x2)6
c)Tìm hệ số của số hạng chứa x10 trong khai triển (3x3-2/x2)5
khai triển nhị thức Newton
\(\left(x^2+\dfrac{1}{x}\right)^4\)
Tìm hệ số lớn nhất trong các hệ số của các số hạng khi khai triển nhị thức sau thành đa thức (1+x)101
Giúp với ạ
khai triển các đa thức sau bằng nhị thức Newton
(x-3)^4 , (x-2y)^5 , (2x+1)^4 , (x-2)^4 , (3x-2y)^4
Tìm hệ số của số hạng chứa x3 trong khai triển \(\left(x^3+\dfrac{1}{x}\right)^5\) (với x\(\ne\) 0)
Tìm hệ số của số hạng chứa \(x^9\) trong khai triển \(\left(x+2\right)^5\left(3x+4\right)^5\)