Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lưu Thị Thảo Ly
Xem chi tiết
Hung nguyen
25 tháng 4 2017 lúc 11:33

Đặt \(y=tx\left(t>0\right)\) thì ta có:

\(\left\{{}\begin{matrix}x\ge3tx\\A=\dfrac{4x^2+9t^2x^2}{tx^2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}t\le\dfrac{1}{3}\\A=\dfrac{4+9t^2}{t}\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{4}{t}+9t=\left(\dfrac{1}{t}+9t\right)+\dfrac{3}{t}\ge6+9=15\)

Dấu = xảy ra khi \(t=\dfrac{1}{3}\) hay \(x=3y\)

Trần Công Hưng
Xem chi tiết
Ngô Đức Hùng
Xem chi tiết
alibaba nguyễn
2 tháng 12 2016 lúc 6:26

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

Ngô Đức Hùng
1 tháng 12 2016 lúc 22:57

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

ngonhuminh
2 tháng 12 2016 lúc 6:37

dong y quan diem @aliba

bo xung them. nhieu qua khi tra loi phan cau hoi troi len khoi man hinh =>" ko nhin duoc de bai"

(da khong biet lai con luoi dang cau hoi nua)

Đạt Trần Tiến
Xem chi tiết
Megpoid gumi gumiya
Xem chi tiết
Lê Anh
Xem chi tiết
Đinh Đức Hùng
Xem chi tiết
alibaba nguyễn
21 tháng 12 2017 lúc 11:22

Đặt \(B=xy=2013-A\) thế vô cái cần tìm thì được

\(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)

\(\Leftrightarrow x^2y^2+20x^4-10x^2+1=0\)

\(\Leftrightarrow20x^4-10x^2+1+B^2=0\)

\(\Leftrightarrow B^2=\frac{1}{4}-\left(\sqrt{20}x^2-\frac{\sqrt{5}}{2}\right)^2\le\frac{1}{4}\)

\(\Leftrightarrow-\frac{1}{2}\le B\le\frac{1}{2}\)

\(\Leftrightarrow-\frac{1}{2}\le2013-A\le\frac{1}{2}\)

\(\Leftrightarrow2012,3\le A\le2013,5\)

kimochi
14 tháng 5 2019 lúc 21:21

bạn chưa ghi gtnn , gtln xảy ra khi x=? và y=?

Bùi Vương TP (Hacker Nin...
Xem chi tiết
tth_new
21 tháng 3 2019 lúc 20:32

\(A=4.\frac{x}{y}+9.\frac{y}{x}\).Đặt \(\frac{x}{y}=t\left(t\ge3\right)\)

\(A=\left(t+\frac{9}{t}\right)+3t\ge2\sqrt{t.\frac{9}{t}}+3t=6+3t\ge6+3.3=15\) (Làm tắt tí nha)

Dấu "=" xảy ra khi t = 3.Tức là x = 3y

Vậy ...

Ánh Dương Hoàng Vũ
Xem chi tiết
 Mashiro Shiina
24 tháng 5 2019 lúc 13:34

\(A=\frac{4}{4x^2+9y^2}+\frac{9}{xy}=\frac{4}{4x^2+9y^2}+\frac{54}{6xy}\)

Đặt \(\left\{{}\begin{matrix}2x=a\\3y=b\end{matrix}\right.\Rightarrow A=\frac{4}{a^2+b^2}+\frac{54}{ab}\)

\(A=\frac{4}{a^2+b^2}+\frac{4}{2ab}+\frac{52}{ab}\)

\(A=4\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{52}{ab}\)

\(\ge\frac{16}{\left(a+b\right)^2}+\frac{52}{\frac{\left(a+b\right)^2}{4}}\ge4+52=56\)

\("="\Leftrightarrow a=b\Leftrightarrow2x=3y\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)

Nguyễn Việt Lâm
24 tháng 5 2019 lúc 13:38

\(A=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{52}{2x.3y}\ge\frac{16}{4x^2+9y^2+12xy}+\frac{52}{\frac{\left(2x+3y\right)^2}{4}}\)

\(A\ge\frac{16}{\left(2x+3y\right)^2}+\frac{208}{\left(2x+3y\right)^2}\ge\frac{16}{4}+\frac{208}{4}=56\)

\(\Rightarrow A_{min}=56\) khi \(\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{1}{3}\end{matrix}\right.\)