Cho 2 số thực dương x,y thỏa mãn \(2\sqrt{xy}+\frac{x}{3}=1\)Tìm Min P=\(\frac{y}{x}+\frac{4x}{3y}+15xy\)
Cho 2 số thực dương x,y thỏa mãn \(2\sqrt{xy}+\frac{x}{3}=1\)Tìm Min P=\(\frac{y}{x}+\frac{4x}{3y}+15xy\)
Cho các số dương x,y thỏa mãn \(x^2+y^2+\frac{1}{xy}=3\) Tìm giá trị lớn nhất của biểu thức:
P=\(2(\frac{1}{1+x^2}+\frac{1}{1+y^2})-\frac{3}{1+2xy}\)
Cho x,y,z là ba số thực dương thỏa mãn x+y+z=\(\sqrt{2}\). Tìm Min T=\(\sqrt{(x+y)(y+z)(x+z)}(\frac{\sqrt{y+z}}{x}+ \frac{\sqrt{x+z}}{y}+\frac{\sqrt{x+y}}{z})\)
1. Cho số thực x. CMR: \(x^4+5>x^2+4x\)
2. Cho số thực x, y thỏa mãn x>y. CMR: \(x^3-3x+4\ge y^3-3y\)
3. Cho a, b là số thực dương thỏa mãn \(a^2+b^2=2\). CMR: \(\left(a+b\right)^5\ge16ab\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
Cho 3 số dương x,y,z thỏa mãn x+y+z=1
CMR: \(\frac{3}{xy+z+zx}+\frac{2}{x^2+y^2+z^2}>14\)
Cho 3 số thực dương x, y, z thỏa mãn \(x^3+y^3+z^3=1\). CMR:
\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\)
Cho các số dương x,y,z thỏa mãn xyz=1. Tìm Min \(P=\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\sqrt{1+y^3+z^3}}{yz}+\dfrac{\sqrt{1+z^3+x^3}}{zx}\)
cho x,y,z là các số thực dương thỏa mãn x+y+z ≤ \(\frac{3}{2}\). Tìm min P biết P=\(\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)\)
Cho 3 số dương x,y,z có tổng bằng 1.CMR\(\sqrt{\frac{xy}{xy+z}}+\sqrt{\frac{yz}{yz+x}}+\sqrt{\frac{zx}{zx+y}}\le\frac{3}{2}\)
Cho 3 số dương x, y, z thỏa mãn \(x+y+z=\frac{3}{4}\). Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{1}{\sqrt[3]{x+3y}}+\frac{1}{\sqrt[3]{y+3z}}+\frac{1}{\sqrt[3]{z+3x}}\)